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Welcome address

In the tradition of the HOFEM workshops organized previously (Bad Honnef, Germany, 1998; St. Louis, USA,

2000; Bad Honnef, Germany, 2003; Herrsching, Germany, 2007), the workshop brings together specialists

interested in developing higher-order Finite Element Methods for Partial Differential Equations (PDEs) with

applications to Engineering and Science.

This time, the participants of the previous meetings team up with the recently emerged Isogeometric Methods

community focusing on extending the use of computational geometry methodologies, such as Non-Uniform

Rational B-Splines (NURBS), T-Splines, Subdivision Surfaces, etc., to the solution of PDEs with smooth dis-

cretizations. These methods have provided a new direction of research in higher-order finite element methods,

and shed light on the accuracy, efficiency and robustness of higher-order finite element methods in general.

Continuing the tradition of the previous meetings, the workshop aims at popularizing the subject of higher-order

discretizations to young researchers and graduate students by minimizing the cost of participation. The best

contributions will be published in a special issue of Computer Methods in Applied Mechanics and Engineering

(CMAME).

The workshop is registered as ECCOMAS Thematic Conference and hosted by Cracow University of Technol-

ogy in Cracow, Poland. The organization has been supported by the Committee on Mechanics of the Polish

Academy of Sciences, Polish Association for Computational Mechanics and two institutes of Cracow Univer-

sity of Technology: Institute for Computational Civil Engineering and Institute of Computer Science.

The workshop is composed of 6 invited review lectures, 24 invited keynotes and 29 poster contributions. The

Organizers express their thanks to all Authors of invited lectures and wish all participants a fruitful exchange

of scientific ideas as well as a pleasant stay in Cracow.

On behalf of the Organizing Committee

Leszek Demkowicz (Conference Chairman)
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JUNE 26 (SUNDAY)

6:00 p.m. Registration and ’get-together’ Canteen, 1st floor, CUT Campus, Warszawska 24

JUNE 27 (MONDAY)

8:45 - 9:00 Opening Canteen, room S1, CUT Campus, Warszawska 24

9:00 - 9:50 Plenary talk T.J.R. Hughes
Isogeometric analysis as a higher-order Fi-

nite Element methodology

9:50 - 10:20 Invited talk E. Cohen
Representing shapes for both design and iso-

geometric analysis

10:20 - 10:50 Coffee break

10:50 - 11:20 Invited talk

K.-U. Bletzinger

J. Kiendl

R.Wüchner

Isogeometric shape optimization of 3D shell

structures

11:20 - 11:50 Invited talk
L. De Lorenzis

P. Wriggers

Isogeometric analysis of 3D large deforma-

tion contact problems

11:50 - 12:20 Invited talk

H. Gomez

Y. Bazilevs

V. Calo

T.J.R. Hughes

X. Nogueira

Isogeometric analysis and unconditionally

stable time integrators for computational

phase-field modeling

12:20 - 1:30 Lunch

1:30 - 2:20 Plenary talk

A. Düester

E. Rank

B. Szabó

Higher-order Finite Elements for solid me-

chanics

2:20 - 2:50 Invited talk
B. Szabó

R. Actis

FEM in professional practice: the questions

of ’what?’ and ’how?’

2:50 - 3:20 Coffee break

3:20 - 3:50 Invited talk Z. Yosibash
p-FEMs for biomechanical applications:

bones and arteries

3:50 - 4:20 Invited talk

E. Rank

A.Düster

S. Kollmannsberger

M. Ruess

D. Schillinger

Z. Yang

The Finite Cell Method: a higher order ficti-

tious domain approach

4:20 - 4:50 Invited talk
I. Páczelt

Z. Mróz

Solution of different wear problems with p-

version of Finite Element Method
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5:00 - 6:30 Poster session

A. Abedian

J. Parvizian

A. Düester

E. Rank

The Finite Cell Method adaptive integration and application to problems

of elastoplasticity

J. Bramwell

L. Demkowicz

J. Gopalakrishnan

W. Qiu

A discontinuos Petrov-Galerkin method for linear elasticity

H. Brandsmeier

K. Schmidt

Ch. Schwab

A multiscale hp-FEM for 2D photonic crystal bands

M. Bürg Towards an hp-adaptive refinement strategy for Maxwell’s equations

N. Collier

V. Calo

M. Paszyński

D. Pardo

The cost of continuity: a study of the performance of isogeometric Finite Elements

using direct solvers

D. Cho

L. Beirão da Veiga

L. F. Pavarino

S. Scacchi

Overlapping additive Schwarz methods for isogeometric analysis

L. Demkowicz

N. Heuer

A recipe: how to construct a robust DPG method for the confusion problem (and

any linear problem as well)

W. Dornisch

S. Klinkel
Boundary conditions and multi-patch connections in isogeometric analysis

A. Fröhlcke

E. Gjonaj

T. Weiland

A boundary conformal approach for higher order discontinous Galerkin Finite

Element Method

L. Garcia-Castillo

I. Gomez-Revuelto

D. Pardo

J. Kurtz

M. Salazar-Palma

Automatic hp-adaptivity for three dimansional electromagnetic problems.

Application to waveguide problems

I. Jaworska On regularization aided HO multipoint solution approach

L. Kern

A. Schröder

A. Byfut

Constrained approximation in hp-FEM non-matching refinements and multi-level

hanging nodes

L. G. Kocsán

E. Bertóti
A two-field dual mixed hp Finite Element Model for cylindrical shells

R. Kolman

J. Plešek

M. Okrouhlı́k

D. Gabriel

J. Kopačka

B-spline Finite Element response of elastic bar under shock loading
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JUNE 28 (TUESDAY)

9:00 - 9:50 Plenary talk J. Schöberl
Hybrid discontinuous Galerkin methods

for the Navier-Stokes equations

9:50 - 10:20 Invited talk

S. Beuchler

S. Zaglmayr

V. Pillwein

Sparsity optimization of H(div)- and H(curl)-

conforming hp-Finite Elements

10:20 - 10:50 Coffee break

10:50 - 11:20 Invited talk

M. Melenk

S. Sauter

M. Löhndorf

Wave number-explicit convergence analysis for

the Helmholtz equation: hp-FEM and hp-BEM

11:20 - 11:50 Invited talk

D. Pardo

M. Paszyński

V. Calo

N. Collier

Direct multi-frontal solvers for higher-order

Galerkin methods

11:50 - 12:20 Invited talk J. Gopalakrishnan
Stable DPG methods with high order approxima-

tion spaces

12:20 - 1:30 Lunch

1:30 - 2:20 Plenary talk A. Buffa
Isogeometric vector field approximations:

a review

2:20 - 2:50 Invited talk

J.A. Evans

Y. Bazilevs

I. Babuška

T.J.R. Hughes

On the effectiveness of multi-dimensional and

compatible splines in numerical approximation

2:50 - 3:20 Coffee break

3:20 - 3:50 Invited talk

L. Beirão da Veiga

Y. Bazilevs

A. Buffa

A. Cottrell

D. Cho

T.J.R. Hughes

G. Sangalli

J. Rivas

Approximation properties of mapped NURBS

spaces for isogeometric analysis

3:50 - 4:20 Invited talk

V. Calo

N. Collier

L. Dalcin

M. Knepley

D. Pardo

M. Paszyński

Application of Isogeometric Finite Elements

4:20 - 4:50 Invited talk

A. Reali

F. Auricchio

F. Calabrò

T.J.R. Hughes

G. Sangalli

Quadrature strategies for NURBS-based isogeo-

metric analysis
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5:00 - 6:30 Poster session

A. Johannessen

T. Kvamsdal

T. Dokken

Adaptive refinement in isogeometric analysis using LRB-splines

S. Kollmannsberger

A. Düester

E. Rank

Ch. Sorger

To mesh or not to mesh. That is the question

F. Krużel

K. Banaś
Powerexcell implementation of numerical integration for higher order elements

A. Niemi

N. Collier

V. Calo

DPG method based on the optimal test space norm for steady transport problems

A. Nowakowski

I. Elhadi

N. Qin

Streamline Upwind Petrov Discontinous Galerkin (SUPDG) method for scalar

and system conservation laws

P. Płaszewski

P. Macioł

K. Banaś

Numerical integration on GPUs for higher order finite elements

A. Ratnani

E. Sonnendrucker

N. Crouseilles

Isogeometric analysis in plasma physics and electromagnetism

U. Römer

S. Koch

T. Weiland

Shape sensitivity analysis based on isogeometric analysis applied to electromag-

netic problems

G. Sangalli

F. Auricchio

L. Beirão da Veiga

T.J.R. Hughes

A.Reali

Isogeometric collocation techniques for static and dynamic elasticity problems

C. Scheid

S. Lanteri

Convergence of a discontinous Galerkin scheme for time domain Maxwell’s equa-

tions in a dispersive media

S. Shannon

Z. Yosibash
Extracting generalized flux intensity functions along circular singular edges

I. Soloveichik

M. Bercovier
Additive Schwartz decomposition methods applied to isogeometric analysis

B. Tóth

E. Bertóti
A three-field dual-mixed hp Finite Element Model for cylindrical shells

N. Trabelsi

Z. Yoshibash
Reliable patient-specific p-FEM simulation of Femur’s mechanical response

R. Vázquez Isogeometric simulation of some real electromagnetic applications
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JUNE 29 (WEDNESDAY)

9:00 - 9:50 Plenary talk

T. Kvamsdal

K.A. Johannessen

T. Dokken

K.F. Pettersen

Adaptive isogeometric methods

9:50 - 10:20 Invited talk

M.A. Scott

M.J. Borden

T.J.R. Hughes

T.W. Sederberg

Isogeometric analysis using T-splines

10:20 - 10:50 Coffee break

10:50 - 11:20 Invited talk
J. Zhang

W. Wang

Converting unstructured quadrilateral / hexa-

hedral meshes to T-splines

11:20 - 11:50 Invited talk

B. Simeon

A.-V. Vuong

C. Gianelli

B. Jüttler

Hierarchical local refinement in isogeometric

analysis

11:50 - 12:20 Invited talk Y. Bazilevs
Isogeometric analysis of fluid-structure inter-

action with emphasis on wind turbines

12:20 - 1:30 Lunch

1:30 - 2:20 Plenary talk
P. Gatto

K. Kim

hp-Finite Elements for coupled problems:

an overview of our new 3D code

2:20 - 2:50 Invited talk A. Schröder
Higher-order Finite Element Methods

for contact problems

2:50 - 3:20 Coffee break

3:20 - 3:50 Invited talk

W. Rachowicz

A. Zdunek

T. Eriksson

Application of hp-adaptive FEM to medical

diagnostics

3:50 - 4:20 Invited talk
W. Cecot

M. Serafin

Application of adaptive FEM to solution

of selected inelastic problems

4:20 - 4:50 Invited talk M. Baitsch
Refinement of curvilinear hexahedral meshes

for higher order Finite Elements

7:00 Conference dinner - restaurant ”Wesele”, Main Market Square 10

JUNE 30 (THURSDAY)

Social activities (e.g. excursion to Wieliczka salt mine)
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Isogeometric vector field approximations: a review

Annalisa Buffa

IMATI-CNR, Via Ferrata 3, 27100 Pavia

E-mail: annalisa.buffa@imati.cnr.it

KEYWORDS: isogeometric analysis, exterior calculus

IGA methodologies are designed with the aim of improving the connection between numerical simulation of

physical phenomena and the Computer Aided Design systems. This is achieved by using B-Splines or Non

Uniform Rational B-Splines (NURBS) for the geometry description as well as for the representation of the

unknown fields.

Beside the interoperability of CADs and Analysis, the use of Spline or NURBS functions, together with isopara-

metric concepts, results in an extremely successfully idea and paves the way to many new numerical schemes

for the discretization of PDEs enjoying features that would be extremely hard to achieve within a standard finite

element framework.

During this talk, I will mainly review the recent works on the design of Spline spaces which can be used as

approximations of differential forms. These spline spaces allow for the construction of discretization schemes

which are compatible in the sense that the discretized models embody conservation principles of the underlying

physical phenomenon (e.g., charge in electromagnetism, mass and momentum in fluid motion and elasticity).

I will show how these spaces can be used to have isogeometric extensions of “classical” compatible discretiza-

tions as Raviart-Thomas elements for Darcy flow, or edge elements for Maxwell equations, but also how regu-

larity of splines can be exploited to extend their applicability to discretize other physical problems such as the

Stokes equations for fluids and the Reissner-Mindlin model for plates.

The main references for the results I will be presenting are the following:

REFERENCES

[1] Buffa A., Rivas J., Sangalli G. and Vazquez R.: Isogeometric Discrete Differential Forms in Three Dimen-

sions, SIAM J. Numer Anal. , 49, pp 818-844, 2011.

[2] Buffa A., de Falco C. , Sangalli G., Isogeometric Analysis: new stable elements for the Stokes equation

Internat. J. Numer. Methods Fluids, DOI: 10.1002/fld.2337

[3] Beirao da Veiga L., Buffa A., Lovadina C., Martinelli M., Sangalli G., An isogeometric method for the

Reissner-Mindlin plate blending problem, in preparation.

[4] J. Evans, Divergence-free B-spline Discretizations for the Stokes and Navier-Stokes Equations, Ph.D. The-

sis, UT Austin.
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HIGH-ORDER FINITE ELEMENTS

FOR SOLID MECHANICS

Alexander Düster1, Ernst Rank2, Barna Szabó3

1 Hamburg University of Technology, Germany
E-mail: alexander.duester@tu-harburg.de

2 Technische Universität München, Germany
E-mail: rank@bv.tum.de

3 Washington University, U.S.A.
E-mail: szabo@wustl.edu

KEYWORDS: structural/solid mechanics, nonlinear problems, multiscale/multiphysics problems

The presentation will give an overview of the research activities on high-order finite elements which have been
conducted during the last couple of years including the current state-of-the-art. The main focus will be on the
development and application of high-order finite elements for solid mechanics. Emphasis will be placed on
implementational aspects concerning topics like the geometric description of curved elements. Furthermore,
the robustness and efficiency of high-order elements will be demonstrated by considering several benchmarks
representing applications in structural and mechanical engineering. We will consider problems related to the
computation of thin-walled structures, problems of hyperelasticity and elastoplasticity, contact mechanics as
well as multiscale and multiphysics problems. Finally we will give an outlook to a new method, combining
ideas of high-order finite elements and fictitious domain methods.

REFERENCES

[1] B.A. Szabó, I. Babuška. Finite element analysis. John Wiley & Sons, 1991.
[2] A. Düster, H. Bröker, E. Rank. The p-version of the finite element method for three-dimensional curved

thin walled structures. International Journal for Numerical Methods in Engineering, 52:673–703, 2001.
[3] B.A. Szabó, A. Düster, E. Rank. The p-version of the Finite Element Method. In E. Stein, R. de Borst,

T.J.R. Hughes (Eds.): Encyclopedia of Computational Mechanics, John Wiley & Sons, Vol. 1, Chap. 5,
pp:119–139, 2004.

[4] A. Düster, J. Parvizian, Z. Yang, E. Rank. The finite cell method for three-dimensional problems of solid
mechanics. Computer Methods in Applied Mechanics and Engineering, 197:3768–3782, 2008.

[5] E. Rank, S. Kollmannsberger, A. Düster. High Order Finite Elements: Principles, Achievements, Open
Questions. In B.H.V. Topping et al. (Eds.): Computational Technology Reviews, SAXE-COBURG Publi-
cations, 2010.
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hp-finite Elements for Couple Problems –

an Overview of Our New 3D Code

Paolo Gatto1, Kyungjoo Kim2

1ICES, University of Texas at Austin, USA

E-mail: gatto@ices.utexas.edu
2ICES, University of Texas at Austin, USA

E-mail: iamkyungjoo@gmail.com

KEYWORDS: hp-finite elements, shape functions, deadlock, parallel solver.

In this talk we review the fundamental steps needed to build an hp-code (choice of element shapes, construc-

tion of shape functions, p-enrichments, h-refinements, solver) and focus on the implementation that we have

developed in our research group led by Professor Leszek F. Demkowicz at The University of Texas at Austin.

Our latest in-house code, hp3d, was built to simulate coupled multi-physics problems, i.e., the variables of

interest may belong to different energy spaces, through variable-order, exact-sequence finite elements of all

shapes—tetrahedra, hexahedra, prisms, and pyramids as well—. Allowing for elements of all shapes is crucial

for successfully modeling thin-walled structures. The physical variables are related through weak couplings.

On the theoretical side, this guarantees existence of the solution for the continuous problem, while on the

implementation side it allows for a rescaling of the physical quantities across the interfaces.

Variable order elements call for a construction of hierarchical H1, H(curl), H(div)-conforming shape functions

for 1D (edge), 2D (triangle, quad) and 3D elements. The logic of implementation is based on identifying a

set of core (kernel, bubble) 1D and 2D functions, and the use of specific edge-to-element and face-to-element

extensions. The dependence of 3D shape functions on different edge and face orientations is taken into account

at the level of element shape functions routine. This simplifies dramatically the assembly procedure and the

implementation of constrained approximation allowing for the presence of hanging nodes. The construction

of H1 shape functions is directly related to transfinite interpolation techniques used in Mesh Based Geometry

(MBG) descriptions that constitutes the foundations of our Geometry Modeling Package.

A consistent departure from previous implementations is in the data structure. Both unconstrained and con-

strained nodes are explicitly stored in the data structure and their status is recorded through a flag. This choice

is motivated by the refinement algorithm. In simple terms, first we break an element of choice, then we per-

form additional refinements to recover a 1-irregular mesh (only 1 level of hanging nodes is allowed) suitable

for computations. As a consequence of this approach, the data structure needs to support meshes with lower

regularity then 1-irregular. The refinement algorithm has been designed in order to avoid deadlocks; we have

experimental results that this is indeed the case.

We also present a highly scalable parallel sparse direct solver on the multi-core architectures using Un-assembled

Hyper Matrices(UHM) for the problems arising from hp−adaptive Finite Element Methods. Our scheme con-

sists of storing the matrix as unassembled element matrices, hierarchically ordered by mirroring the refinement

history of the domain or recursive Domain Decomposition. The hierarchical structure of unassembled matrices

and independent local data storage naturally leads to the task parallelism via the Divide and Conquer algo-

rithm. As the second level of task parallelism, algorithms-by-blocks is exploited to achieve higher scalability.

We compare the performance against other sparse direct solver packages on the 24 core machine.
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ISOGEOMETRIC ANALYSIS AS A HIGHER-ORDER

FINITE ELEMENT METHODOLOGY

Thomas J.R. Hughes1

1ICES, University of Texas at Austin, USA

E-mail: hughes@ices.utexas.edu

I will describe how Isogeometric Analysis may be viewed as a higher-order finite element methodology and how

it may be easily implemented in existing finite element computer programs through a shape function subroutine.

I will review current developments in the Isogeometric Analysis [1,2] approach to problems of computational

mechanics and present recent progress toward developing integrated CAD/FEA procedures that do not involve

traditional mesh generation and geometry clean-up steps, that is, the CAD file is directly utilized as the analysis

input file. I will also summarize some of the mathematical developments within Isogeometric Analysis that

confirm the superior accuracy and robustness of spline-based approximations compared with traditional FEA

and expand the scope of applications to new areas. Sample applications will be selected from problems of linear

and nonlinear solids and structures, and fluids and fluid-structure interaction.

REFERENCES

[1] T.J.R. Hughes, J.A. Cottrell and Y. Bazilevs. Isogeometric Analysis: CAD, Finite Elements, NURBS,

Exact Geometry and Mesh Refinement. Computer Methods in Applied Mechanics and Engineering. Vol.

194, Nos. 39-41, pp. 4135-4195, 2005.

[2] T.J.R. Hughes, J.A. Cottrell and Y. Bazilevs. Isogeometric Analysis: Toward Integration of CAD and FEA.

Wiley, Chichester, U.K., 2009.
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ADAPTIVE ISOGEOMETRIC METHODS

Trond Kvamsdal1, Kjetil A. Johannessen1, Tor Dokken2, Kjell F. Pettersen2

1Dept. of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim, Norway

E-mail: Trond.Kvamsdal@math.ntnu.no, kjetijo@math.ntnu.no
2Dept. of Applied Mathematics, SINTEF ICT, Oslo, Norway

E-mail: Tor.Dokken@sintef.no, Kjell.Fredrik.Pettersen@sintef.no

KEYWORDS: Isogeometric analysis, Adaptive methods, LR B-splines

We will start out by presenting an overview of the current research activities related to error estimation and

adaptivity for isogeometric finite element methods.

The focus will then be on adaptive refinement using LR B-splines pioneered by Tor Dokken. LR B-splines

allow for local refinement as T-joints and contains refining algorithms which exactly preserve the geometry [1].

The adaptive procedures will be tested on benchmark problems with known analytical solution.

REFERENCES

[1] T. Kvamsdal, K. A. Johannessen and T. Dokken. Adaptive Isogeometric methods using LR B-splines. In

MekIT’11 Sixth National Conference on Computational Mechanics, Editors B. Skallerud and H. I. Ander-

sson, Page 157–170, 2011, Tapir Academic Press, Trondheim, ISBN:978-82-519-2798-7.
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Hybrid discontinuous Galerkin methods for the Navier-Stokes equations

Joachim Schöberl1

1Institute for Analysis and Scientific Computing, Vienna University of Technology, Austria

E-mail: joachim.schoeberl@tuwien.ac.at

Discontinuous Galerkin finite element methods provide a lot of freedom to obtain desired stability properties of

numerical schemes. In particular, the upwind choice of numerical fluxes allow large convective terms, e.g. large

Reynolds numbers. Furthermore, by relaxing the continuity constraints of the finite element basis functions it

becomes simple to construct exactly divergence free discrete approximations leading to stability in kinetic

energy.

Discontinuous Galerkin methods lead to an increased number of unknowns, and even worse, to a much stronger

coupling in the stiffness matrix. Here, recent hybridization techniques come into the game. One introduces

even more unknowns on element interfaces. But now, the coupling between elements is reduced to the interface

variables, and the element unknowns can be eliminated by static condensation.

In our talk we discuss the construction of such hybrid DG methods for the incompressible Navier-Stokes equa-

tions. We discuss the connection to time integration (in particular splitting methods), and iterative solvers

(in particular domain decomposition methods). Numerical results for benchmark problems are presented.
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REFINEMENT OF CURVILINEAR HEXAHEDRAL MESHES

FOR HIGH ORDER FINITE ELEMENTS

Matthias Baitsch1

1Vietnamese-German University, Ho Chi Minh City, Vietnam

E-mail: m.baitsch@vgu.edu.vn

KEYWORDS: template-based mesh refinement, composition of geometry mapping, shape optimization

In this paper, a method for the conforming refinement of high-order hexahedral meshes on curvilinear domains

is presented. Two basic problems are addressed: How to establish the geometrical mapping of the refined

elements and how to determine a combination of refinement templates such that the existing elements can be

split without generating hanging nodes.

The presented approach uses a catalogue of refinement templates (see e.g. [1]) for faces and elements. Individ-

ual patterns are identified by the number of nodes inserted on edges, whereas currently, a maximum number of

two nodes per edge is allowed. The refinement patterns, which are defined in a reference orientation, can be

applied to the actual situation by transforming the geometry and the topological relations.

During the refinement of a single element according to a certain refinement template, the geometry mappings of

the new elements are established by reusing the original functions: The template along with the node positions

on the edges define a mesh of elements K̃i on the reference domain K̂. For each element K̃i on the reference

domain, the geometry map Q̃i : K̂ → K̃i is used to construct the geometry functions Qi of the new elements as

composition Qi = Qo ◦ Q̃i where Qo is the geometry of the original element, see Figure 1. A similar procedure

is applied in order to refine edges and faces.

The actual refinement of a set of elements is carried out by an algorithm which takes a collection of new nodes

placed on the edges to be refined as input data. Based upon this input, an unrefined element, for which a unique

choice of a refinement template exists, is selected. According to the refinement template, new nodes are inserted

on the affected edges (if required) and the new elements are created. These steps are repeated until all elements

in the input set are refined. In ambiguous cases, the algorithm can generate all possible solutions, however,

since this is a combinatorial problem, it is most often advisable to specify additional edge refinements.

The template-based algorithm considerably simplifies mesh refinement on curvilinear domains. Since only a

small amount of input data is required, this approach is well suited for interactive applications where the mesh

is refined a priory along geometrical features such as inclined edges. The repeated application of the procedure

allows it to generate multiple refinement layers easily. Another application area is shape optimization, where

the geometry of refined elements is automatically updated upon changes in the design.

ξ1 ξ2

ξ3

K̂ K̂

reference domain mesh on reference domain refined elements

original element

Q̃1

Q1

K2
˜

K3
˜

K1
˜

K2

K3

K1

refinement

Figure 1: Refinement of a curvilinear element

References

[1] Dae-Young Kwak and Yong-Taek Im. Remeshing for metal forming simulations—Part II: Three-

dimensional hexahedral mesh generation. International Journal for Numerical Methods in Engineering,

53(11):2501–2528, 2002.
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Isogeometric Analysis (IGA) [1], despite its young age, has significantly matured as a technology for geometry

representation and computational analysis. Although NURBS remain the most popular means of geometry

modeling for IGA, advances in T-Spline and Subdivison surface representations enabled the solution of compu-

tational problems requiring local mesh refinement, which is not easily accomplished with NURBS. Advances

in model quality definition and improvement enabled the generation of better- parameterized shapes for IGA,

thus improving the quality of the computational solution. Recent efforts to define standardized file formats

for data exchange between the geometry modeling and computational analysis software enabled straightfor-

ward solution of complicated structural problems that involve large deformation, plasticity and contact, using

well-validated commercial FEM software. Furthermore, IGA is able to superbly handle many applications that

otherwise create significant challenges to standard finite element technology.

However, many challenges remain for IGA to be fully accepted as an industrial-grade analysis technology. The

ability to create 3D volumetric complex geometry models in an automated manner is one such challenge. An-

other challenge is to prove that IGA is capable of producing accurate and robust results for complex-geometry

multi-physics problems (e.g., fluid-structure interaction), which is one of the major demands of modern com-

putational analysis.

This presentation will focus on the coupling strategies, specific to IGA, for multi-physics applications that make

use of non-matching descriptions of geometry at the interface between different physical subsystems. These

coupling procedures allow greater flexibility in the computational analysis, and, simultaneously, alleviate the

difficulties of geometry modeling and construction of interfaces that match parametrically. Applications to

problems of engineering interest will be shown. In particular, applications to wind turbine simulation will be

presented in great detail.
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In this contribution we review the approximation properties of the discrete spaces uses in Isogeometric Analysis,

introduced by T.J.R. Hughes and co-workers in 2005.

Isogeometric Analysis (in short IGA) follows the isoparametric paradigm in the geometric framework described

by CAD. In other words, in order to (1) be able to exactly describe CAD type geometries and (2) follow an

isoparametric approach, IGA adopts a discrete space which is generated by mapped NURBS basis functions.

Such functions are piecewise rational polynomials, mapped from a standard parametric space into the physical

geometry.

Independently of the particular IGA numerical scheme that is used, be it for instance a Galerkin or a collocation

discretization, a fundamental condition for the convergence of the method is the approximation properties of

the discrete space. In this contribution we investigate the recent IGA literature on the approximation properties

of mapped NURBS. Such literature, which takes the steps from the approximation properties of splines (see for

instance the Shumaker and De Boor books), starts in 2006 with contribution [1].

In paper [1], among other results, the authors show an h-approximation analysis, which makes use of a gener-

alized Bramble-Hilbert lemma in bent Sobolev spaces in order to overcome difficulties which are peculiar to

the NURBS framework. More recently, in [2], a different approach more related to hp type analysis is instead

followed, with the scope of studying the behavior of the NURBS approximation also with respect to k and p.

The authors are able to give precise results, but only in the case k . p/2, which allows for certain fundamental

simplifications. Finally, in [3] the authors concentrate again on the h-analysis, in this case in order to obtain

results which apply also to anisotropic estimates. The adopted arguments are again different, and are essentially

based on a one dimensional estimate.

During the talk, all the shown theoretical results will be supported by a range of numerical tests.
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Shape optimization aims at finding the optimal shape of a structure with respect to a specific objective.

Typical objectives are structural properties like maximum stiffness, minimum weight, etc. For shells, 

and especially for thin shells, the overall structural behaviour is crucially determined by their shape. 

An optimal shape for minimizing the weight, for example, carries all loads by membrane forces and no 

bending moments appear, which guarantees an efficient use of the material.

Applying the isogeometric concept to shape optimization, the distinction between CAD-based and FE-

based optimization is redundant since both models rely on the same geometric basis. Therefore, the 

advantages of both approaches can be combined, and furthermore, the whole process of design, 

analysis and shape optimization can be integrated into one geometric model. Nevertheless, it is 

important to carefully distinguish between analysis and optimization model and the various levels of 

intermediate refinements of the latter. This approach is presented for shape optimization of thin shells,

based on isogeometric shell analysis as presented in [1,2].

Besides the promising methodological aspects of IGA based shape optimization the paper will discuss 

several principal points of shape optimal design of shell structures, as there are: the properties of large, 

non-convex design spaces, the non-uniqueness of shape parameterization, and how to treat them, as 

well as the utility and futility of optimal solutions which IGA based optimization shares with other 

techniques.
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Since November we have been working on fast implementations of B-spline/NURBS based finite element

solvers, written using PETSc. PETSc is frequently used in software packages to leverage its optimized and

parallel implementation of solvers, however we also are using PETSc data structures to assemble the linear

systems. These structures in PETSC (called DAs) were originally intended for the parallel assembly of linear

systems resulting from finite differences. We have reworked this structure for linear systems resulting from

isogeometric analysis based on tensor product spline spaces. The result of which is a framework for solving

problems using isogeometric analysis which is scalable and greatly simplified over previous solvers. Several

applications of this framework to linear and nonlinear model problems will be presented and simulation results

described.
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The adaptive finite element method has been widely used in numerical analysis of solid mechanics problems

in elastic range. However, also inelastic analysis, mainly in the framework of deformation theory of plasticity,

was performed by either h or p−adaptive versions of FEM [4]. Some of the authors report superior perfor-

mance of the p−adaptive FEM in comparison with the h one (e.q. [3]) in such cases. We have applied the

h and hp−adaptive FEM [2] to shakedown problems, elastic-visco-plastic analysis [1] as well as modeling of

heterogeneous materials by computational homogenization [5], where the hp−adaptive FEM is used at two

scales with flow plasticity theory as the constitutive model at the microlevel.

Application of the adaptive mesh refinement required studying such numerical issues as: appropriate a’posteriori

error estimation both in space and time, transfer of the solution from an old mesh to a new one or strategy of

mesh adaptation. The multiscale analysis includes also assessment of the modeling error that results from the

computational homogenization.

Our numerical results of residual stress computation by both direct shakedown approach and more precise

elastic-visco-plastic analysis, reconstruction of residual stresses in a plate on the basis of experimental mea-

surements by inverse problem solution, as well as modeling of elastic-plastic deformations of metal matrix

composites using the computational homogenization confirm good performance of the adaptive, in particular

hp−adaptive FEM, for inelastic problems.
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Isogeometric Analysis (IA) has been proposed as a methodology for bridging the gap between Computer Aided

Design (CAD) and Finite Element Analysis (FEA). While CAD typically focuses on a boundary representa-

tion, FEA has focused on volumetric representations. Creating high quality representations for just one of

these goals can be challenging. However, proposed representations for IA must create parameterizations and

elements suitable for supporting both good geometric computations and have good qualities for this new mode

of analysis. Further different analysis methods have wanted different properties in their meshes. This presenta-

tions discusses some of the challenges in moving from current representational and modeling methodologies,

and some initial parameterization, modeling/reconstruction methodologies towards creating models that satisfy

both domains.
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Since its introduction in 2005 by Hughes, Cottrell, and Bazilevs [1], isogeometric analysis has emerged
as a popular design-through-analysis technology. In isogeometric analysis, the basis which is used to
describe computer aided geometry is also utilized for finite element analysis. Typically, such a basis
composes of polynomial or rational splines. Hence, a natural question arises as to the effectiveness of
splines in numerical approximation and, ultimately, finite element analysis. In this talk, we assess the
effectiveness of multidimensional splines as approximating functions utilizing the theory of Kolmogorov
n-widths. Numerical algorithms for computing n-widths and sup-infs in a Sobolev space setting are
presented based on the solution of two variational eigenproblems. These algorithms result from the
application of Galerkin’s method and Lanczos iteration. A numerical study is conducted in which we
compute the n-width and sup-inf for a large class of smooth multi-dimensional splines. This study
reveals the near-optimal approximation properties of smooth multi-dimensional spline functions as
well as smooth compatible spline functions satisfying a discrete de Rham diagram. We finish this talk
by comparing the approximability of multidimensional splines exhibiting maximal continuity with
classical nodal and edge finite element basis functions.

References

[1] T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements,
NURBS, exact geometry, and mesh refinement. Computer Methods in Applied Mechanics and

Engineering, 194:4135–4195, 2005.

26



HOFEIM 2011, Cracow, Poland

ISOGEOMETRIC ANALYSIS AND UNCONDITIONALLY STABLE TIME

INTEGRATORS FOR COMPUTATIONAL PHASE-FIELD MODELING

Hector Gomez1, Yuri Bazilevs2, V.M. Calo3, Thomas J.R. Hughes4, Xesus Nogueira1

1University of A Coruna, Spain

E-mail: hgomez@udc.es
2University of California San Diego, USA

E-mail: jbazilevs@ucsd.edu
3King Abdullah University of Science and Technology, Saudi Arabia

E-mail: victor.calo@kaust.edu.sa
4ICES, University of Texas at Austin, USA

E-mail: hughes@ices.utexas.edu

KEYWORDS: Isogeometric analysis, phase field, unconditionally stable

Phase-field models typically involve higher-order partial-differential operators which are difficult to deal with

by standard finite element approaches that utilize C 0 trial and weighting functions. Our approach is based on

Isogeometric Analysis, permitting simple and efficient discretizations through the use of continuously differen-

tiable splines.

We present results for the Cahn-Hilliard equation, a two-phase model applicable to the segregation of phases

in binary alloys. We are able to compute mesh independent, equilibrium solutions in two and three dimensions

through the use of an adaptive time-stepping strategy and a local renormalization of the Cahn-Hilliard parameter

that governs the thickness of diffuse interface layers. We have also applied our methodology to the Navier-

Stokes-Korteweg equations, which describe water/water-vapor two-phase flow. We present solutions involving

condensing vapor bubbles in two and three dimensions

Time permitting, we will present our new unconditionally stable mixed variational method for the phase-field

crystal equation, a phase-field model that describes the microstructure of two-phase liquid-solid systems. Our

algorithm requires the use of C 1 basis functions, and we employ again discretizations based on continuously

differentiable splines. To the best of our knowledge, this is the first second-order time accurate unconditionally

stable method for the phase-field crystal equation.
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There are compelling reasons to approximate solutions of partial differential equations using high order poly-

nomials, NURBS, plane-waves etc. However, once we choose such a subspace of approximating functions (the

trial space), it is often not easy to establish stability within a ”mixed” framework. In a mixed framework, one

tries to approximate the solution as well as its fluxes simultaneously. Traditionally, stability is achieved by

carefully balancing the approximation spaces for the solution and the fluxes, but this is a difficult task even for

standard high order polynomials spaces, not to mention the many other novel trial spaces that researchers are

interested in these days.

In this talk, we will review a class of new discontinuous Petrov-Galerkin (DPG) methods which obtain stability

via a different approach. Given any (standard or non-standard) trial space, we will show how one can locally

and automatically construct a test space that guarantees stability.

Numerical examples illustrating the extraordinary stability of these new methods will be shown. Stability with

respect to variations in h (mesh size) and p (polynomial degree) can be theoretically established for several

multidimensional boundary value problems. The robustness of the method when applied to elasticity is evident

numerically and is provable using a few new theoretical techniques. In wave propagation problems, we nu-

merically observe robustness with respect to wavenumber (resulting in solutions with hardly observable phase

errors).

The talk aims to convey the potential of these methods through a few chosen numerical examples and simple

but far-reaching theoretical justifications.
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Isogeometric analysis of contact problems has a good potential to yield significant advantages with respect to

the use of standard Lagrange discretizations. As NURBS geometries can attain the desired degree of conti-

nuity at the element boundaries, they possess the premises to alleviate all the problems arising particularly in

sliding contact when using conventional Lagrange polynomial elements, which are only C0-continuous at the

interelement nodes. Such problems have often been faced by introducing smoothing techniques, some of which

involving NURBS interpolation. These procedures generally improve the performance of the contact algorithms

by enhancing the continuity of the contact surfaces, however they do not increase the order of convergence as

the higher-order approximation does not involve the bulk behavior of the solids.

In this work, NURBS-based isogeometric analysis is adopted to model large deformation 2D frictional and

3D frictionless contact problems. The proposed contact formulation is based on a mortar approach, extended

to NURBS-based interpolations, and combined with a simple integration procedure which does not involve

segmentation of the contact surfaces. Both the penalty and the augmented Lagrangian methods are formulated

and implemented.

The presented examples deal with both small- and large-deformation cases. The quality of the solution is

examined in terms of contact stress distributions in the small-deformation examples, and in terms of global

load vs. displacement behavior for the large-deformation, large-sliding examples. In both cases, the results

obtained with the isogeometric analysis and with the traditional Lagrange discretizations are compared for

varying resolution and order of the contact surfaces.

Based on results obtained in this investigation, it can be concluded that the proposed contact mortar formula-

tion using NURBS-based isogeometric analysis displays a significantly superior performance with respect to

the same formulation using standard Lagrange polynomials. This superiority is a combined effect of the higher

continuity achieved at the inter-element boundaries and of the inherent non-negativeness of the NURBS inter-

polation functions. While these two favorable features may also be individually obtained in different ways (e.g.,

higher geometric continuity can be pursued by means of smoothing techniques and inherent non-negativeness is

possessed by other categories of shape functions), NURBS-based isogeometric analysis provides a very simple

framework in which both are simultaneously and naturally achieved.
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1S, Vienna University of Technology, Austria
E-mail: melenk@tuwien.ac.at

2ICCE, University of Zürich, Switzerland
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We consider boundary value problems for the Helmholtz equation at large wave numbers k. In order to un-
derstand how the wave number k affects the convergence properties of discretizations of such problems, we
develop a regularity theory for the Helmholtz equation that is explicit in k. At the heart of our analysis is
the decomposition of solutions into two components: the first component is an analytic, but highly oscillatory
function and the second one has finite regularity but features wavenumber-independent bounds.

This understanding of the solution structure opens the door to the analysis of discretizations of the Helmholtz
equation that are explicit in their dependence on the wavenumber k. As a first example, we show for a con-
forming high order finite element method that quasi-optimality is guaranteed if (a) the approximation order p
is selected as p = O(log k) and (b) the mesh size h is such that kh/p is small. As a second example, we consider
combined field boundary integral equation arising in acoustic scattering. Also for this example, the same scale
resolution conditions as in the high order finite element case suffice to ensure quasi-optimality of the Galekrin
discretization.
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The wear process on the frictional interface of two bodies in a relative sliding motion induces shape evolution. 

Usually the simulation of the contact shape evolution is provided by numerically integrating the modified 

Archard wear rule expressed in terms of relative slip velocity and contact pressure. (The modified Archard 

wear rule specifies the wear rate in normal direction to the contact surface). However, much more effective 

procedure was shown in paper [1] that the minimization of the total wear dissipation power at the contact 

interface specifies the steady wear regime. The optimality conditions of the functional provide the contact 

stress distribution and the wear rate of the rigid body motion. It is important to note that in general contact 

conditions the vectors of wear rate is not normal to the contact surface and has tangential component. A 

fundamental assumption is now introduced, namely, in the steady state the wear rate vectors of bodies are 

collinear with the rigid body wear velocity allowed by the boundary conditions. 

The Coulomb dry friction conditions and the tangential slip rule are assumed. It is assumed that the 

displacements and deformations are small, the materials of the contacting bodies are linearly elastic. The 

discretization of the contacting bodies was performed by the displacement based on p-version of finite 

elements [2] assuring fast convergence of the numerical process and accurate specification of geometry for 

shape optimization. 

It is proved that the derived formulae for contact pressure distribution are independent  of the relative sliding 

velocity and some wear parameters. The formulae for contact pressure distribution are also derived when the 

wear parameters  depend on temperature. Minimization of the wear functional with equilibrium constraints for 

body 1B  gives results for steady state wear process of arbitrary shape of contact surface. The non-linear 

equations can be solved by applying  the Newton-Raphson technique.  

In the thermo-elastic problem for fixed contact zone a steady wear state is reached for which the contact stress 

distribution in a moving body 1B  (punch) is fixed and moves with the contact zone translating along the body 

2B . The first specific case is related to wear analysis induced by a punch translating on an elastic strip. The 

second example is related to a drum braking system (for different support conditions) for which the stationary 

pressure distribution is not constant but corresponds to steady wear state. To generate non-oscillating solutions 

of temperature fields the streamline upwinding (Petrov-Galerkin) formulation can be applied in the presented 

examples. It is shown that the thermal distortion affects essentially the optimal contact shape. 

  Some examples demonstrate that the wear process proceeds in a steady state when the numerical process 

starts at shapes corresponding to the optimal solution. This procedure gives a good possibility to control the 

error of finite element solution and convergence.  
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Solving a system of linear equations is typically the dominating cost of most high order finite elements and

isogeometric methods. In here, we focus on the use of direct solvers since they are are essential for a large

number of applications and, in addition, they frequently constitute the main building block of iterative solvers

such as multigrid. Specifically, we consider multifrontal direct solvers, which are ”smart” implementations of

the well-known LU factorization algorithm for sparse matrices. The presentation is divided into three parts:

1. First, we estimate theoretically the CPU time cost and memory usage of a multifrontal solver in terms

of the problem size, polynomial order of approximation, and regularity of the approximated solutions.

From these estimates, we conclude that additional regularity in the approximated solution increases dra-

matically the cost of the solver.

2. Second, we employ a well-known solver (MUMPS) to compare the theoretical estimates versus numerical

results both for hp-FEM as well as for IGA. Numerical results agree with the theoretical ones.

3. Finally, based on the above estimates and the numerical results, we describe a new parallel in-core and

out-of-core multifrontal solver that aims to provide superior performance. This solver is designed to deal

efficiently with different types of high-order Galerkin methods, including hp-FEM, IGA, Fourier-Finite-

Element methods, and multi-physics applications.

Exemplary applications are multi-physics computations of the acoustic of the human head [1] and borehole

resistivity measurements simulations in deviated wells [2]. The first problem implies the necessity of utilizing

different number of degrees of freedom per node. Moreover, it is necessary to use global p adaptive scheme

resulting in higher order polynomials over the hp finite elements. The second problem results from application

of the Fourier series expansion for the solution in the azimuthal direction over the two dimensional mesh. It

implies the number of equations equal to the number of Fourier modes utilized. The hp adaptive algorithm

generates the two dimensional mesh with highly non-regular distribution of degrees of freedom. Both these

problems are solved by using parallel multi-frontal direct solver. The first problem is a fully three dimensional

problem and it requires an out-of-core feature to be solved [3], while the second problem can be solved in core

[4].
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The presentation consists of two parts. The first part concerns the use of the hp-version of the Finite Element

Method (FEM) with adaptivity for medical diagnostics, for example for tumour detection, by solving electro-

magnetic inverse scattering problems, while the other part is devoted to the accurate and reliable prediction of

the mechanical response of soft tissue, especially arteries with aneurysms, or with atherosclerostic changes,

that lead to a high risk for rupture when pressurized.

In the first part we present a technique to solve inverse medium scattering problems in electromagnetics. Our

motivation is to develop a method of microwave tomography capable to create three-dimensional images of bi-

ological objects based on reconstruction of distribution of complex electric permittivity. The method might find

applications in medicine and other areas. As advantages of the approach one might consider its non-invasive

character (no ionisation) and high contrast of tissues affected by a possible medical condition. The reconstruc-

tion of distribution of electric permittivity is obtained by solution of the inverse medium scattering problem.

We try to minimize the misfit between the measured waves scattered by the object due to its illumination by

incident waves, and the simulated scattered waves corresponding to trial distributions of electric permittivity.

The simulations are performed with FEM, and their accuracy must be sufficient at least to match the accuracy

of the measurements. This is done by applying p-adaptivity of the FE-mesh, i.e. enriching order of elements in

the area of large errors. They show up especially in regions with rapid changes of material parameters and in

the vicinity of transmitters radiating the illuminating waves. The method based on solving the inverse scatter-

ing problem is able to reconstruct the distributions of electric permittivity with perturbations localized to small

areas which raises hopes for its possible practical applications.

In the second part arteries are considered as tube-like structures built-up of layers consisting of nearly incom-

pressible rubberlike matrix materials reinforced by collagen fibers [1]. Collagen fibers are known to become

nearly inextensible at large strains. We present results from an on-going investigation into the efficiency and

robustness of the hp-version FEM with p-adaptivity in domains with smooth nearly-isochoric deformations and

with h-adaptivity, i.e. by subdividing elements, in cases involving strong stress gradients due to reinforcement

by strongly anisotropic nearly inextensible fibres. The ability of the higher-order FEM to avoid volumetric

locking and locking due to strong anisotropy due to the presence of fibers with a limited extensibility is in-

vestigated and presented. Volumetric locking is avoided using a generalisation of the two-field formulation of

displacement-pressure type [2] with no interelement continuity enforced for the pressure variable.
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The Finite Cell Method (FCM) combines high order Ansatz spaces with a fictitious domain approach. The

arbitrarily shaped domain of computation is embedded in a larger, simply shaped region which can easily be

meshed in, e.g., a grid of rectangular cells. The method was first investigated for 2D- and 3D-problems in linear

elasticity, where it was shown that excellent accuracy and even an exponential p-convergence can be obtained

for smooth problems. This presentation will give an overview on extensions of the FCM to geometrically and

physically non-linear problems as well as on adaptive refinement techniques. It will discuss issues of an ef-

ficient implementation and show, how FCM can be embedded in a computational steering framework for an

interactive simulation of a total hip replacement. Finally, the close connection to isogeometric analysis will

be pointed out. It will be demonstrated how the combination of FCM and IGA offers an easy and efficient

possibility for a structural simulation of trimmed surfaces.
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In the framework of NURBS-based isogeometric analysis (see, e.g., [1-2]), an issue to be definitely considered
is the study of efficient quadrature techniques, to be used instead of classical Gauss rules (which are far from
being optimal in the case of high inter-element smoothness).

In this context, a rule of thumb emerges, i.e., the half-point rule, indicating that optimal rules involve a number
of points roughly equal to half the number of degrees-of-freedom, or, equivalently, half the number of basis
functions of the space under consideration (see [3]). The half-point rule is independent of the polynomial order
of the basis.

In general, efficient rules require taking into account the precise smoothness of basis functions across element
boundaries. Following this idea, new rules of practical interest are obtained and shown in this work. Numerical
tests are presented in order to prove the efficiency of the new rules as compared with standard Gauss quadrature.
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In this talk, finite element methods of higher-order are presented for contact problems in elasticity. The dis-

cretization approach relies on a saddle point formulation where the introduced Lagrange multiplier is defined

on the surface of one of the bodies in contact. This approach was originally proposed by Hlávaček et al. [1] for

low-order finite elements and is extended to higher-order discretizations, cf. [2,3].

To guarantee the stability of the mixed scheme, a uniform discrete inf-sup condition for the higher-order ap-

proach is verified. It is shown that the discrete inf-sup condition is fulfilled if the quotients of the mesh sizes

and the polynomials degrees are suitably small. For low-order finite elements of the proposed type, the dis-

cretization of the Lagrange multipliers necessitates boundary meshes with a different mesh size than that of

the primal variable. In the higher-order approach, this assumption can, in principle, be avoided using different

polynomial degrees.

Assuming the discrete inf-sup condition, the convergence of the scheme and some a priori estimates are proven

where the definition of the Lagrange mulitpliers in Gauss quadrature points is exploited. Additionally, a pos-

teriori estimates are presented which include the discretization error of an auxiliary problem and some further

terms capturing the geometrical error and the error in the complementary condition. The stability and con-

vergence properties of the mixed scheme are studied in numerical experiments. Finally, the application of the

a posteriori error estimates within adaptive schemes is discussed. It can be observed that optimal convergence

rates of higher-order can be restored for a variety of contact problems using such adaptive schemes.
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Isogeometric analysis has emerged as an important alternative to traditional engineering design and analysis

methodologies. In isogeometric analysis, the smooth geometric basis is used as the basis for analysis. Most of

the early developments in isogeometric analysis focused on establishing the behavior of the smooth NURBS

basis in analysis. It was demonstrated that smoothness is an important computational advantage over standard

finite elements.

While smoothness is an important consideration, NURBS are severely limited by their tensor product construc-

tion. Analysis-suitable T-splines are a superior alternative to NURBS. T-splines can model complicated designs

as a single, watertight geometry. Additionally, NURBS are T-splines so existing technology based on NURBS

extends to T-splines.

In this talk, we review current progress in analysis-suitable T-spline descriptions and their application to iso-

geometric analysis. Specifically, the underlying formulation, mathematical properties, and local refinement

capability will be described. We will then discuss their application to problems in fracture. In this setting it

has been shown that local refinement and smoothness offer important advantages over traditional finite element

discretizations.
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Local refinement is one of the key issues in isogeometric analysis. Since both the geometric representation
and the numerical approximation by means of bi- or tri-variate NURBS have a tensor product structure, a
quadrilateral topology of the computational mesh for a single patch model in two space dimensions and a
hexahedral topology in three dimensions are unavoidable in this framework. As a consequence, truly local
refinement is impossible. T-splines have been shown to be able to break up the rigidity of the NURBS-based
isogeometric discretization and are currently investigated in various directions [1,2].

As alternative approach, we present in this contribution an adaptive local refinement technique based on exten-
sions of hierarchical B-splines. The fundamental idea of our approach is very simple and goes back to work by
Kraft [3]. Essential properties such as linear independence and also the preservation of arbitrary smoothness in
the corresponding refined Galerkin basis can be guaranteed easily in this way. Furthermore, we use concepts
well-established in finite element analysis to fully integrate hierarchical spline spaces into the isogeometric
setting, which allows us to make use of a posteriori error estimation. Numerical results taken from [4] illustrate
this promising refinement method.
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The present conference is the latest in a series of conferences that started with p-FEM 2000 in St. Louis.

These conferences focused on the use of high order methods in computational solid and fluid mechanics. The

rationale for viewing high order methods as separate and distinct from low order ones arose from the way

the finite element method (FEM) was developed, implemented and applied rather than from the theoretical

foundations of FEM. This presentation will address two questions relevant to both professional practice and

ongoing research.

The first question is: What should be computed? This question has to be addressed in the process of con-

ceptualization, the end product of which is a mathematical model [1]. Denoting the exact and finite element

solutions respectively by uEX and uFE , the goal of computation should be stated as follows: Determine some

specific system response quantity Φ(uFE) such that

|Φ(uEX)−Φ(uFE)| ≤ τ|Φ(uEX)| where τ is a prescribed tolerance.

In structural and mechanical engineering practice the usual goal is to predict conditions that will result in the

onset and/or propagation of failure. In those cases Φ(uEX) is a function of random variables. The definition

of Φ(uEX) typically involves subjective judgment. The mathematical model has to be formulated such that for

a fixed set of input data Φ(uEX) exists and is unique, see for example [2]. The suitability of Φ(uEX) for the

intended purpose is tested in validation experiments [1].

The second question is: How Φ(uFE) should be computed and how the realized value of τ, denoted by τR, can

be estimated? A closely related question is: How does one ensure that τR ≤ τ? Hierarchic sequences of finite

element spaces and properly designed extraction procedures play a very important role in the estimation and

control of τR.

The professional practice of numerical simulation based on FEM is dominated by software products that make

it difficult or impossible to estimate τR. This is because model definition and discretization are mixed in the

element libraries of these software products and ad-hoc procedures, such as reduced integration and the use of

tuning parameters, introduce errors that are outside of the users’ control.

New procedures of standardization are being developed that make quality assurance in numerical simulation

feasible in professional practice through the utilization of hierarchic models and finite element spaces [3].
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The advantages of the p-version of the finite element method (FEM) are exploited herein to address the me-

chanical response of human femurs and arteries.

p-FE models for patient-specific femurs are being constructed automatically from quantitative computed to-

mography (qCT) scans with inhomogeneous orthotropic linear elastic material assigned to the FE models

directly from the CT scan at each integration point [1]. These FE models are being verified and thereafter

validated on a cohort of 17 fresh-frozen femurs which were defrosted, qCT-scanned, and thereafter tested in an

in-vitro setting [2,3].

We also investigate the complex mechanical response of human arteries by p−FEMs, addressing geometrically

non-linearity involving hyperelastic anisotropic, nearly-incompressible constitutive models with passive and

active parts [4]. In this case we demonstrate the efficiency of p-FEMs compared to traditional commercial

h-FEMs as Abaqus and the locking free properties of the displacement-formulation when applied to nearly

incompressible hyperelastic materials under finite deformations.
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A crucial work in Reverse Engineering is to construct 3D geometry from scanned imaging data. With the rapid

development of 3D scanning data acquisition and automatic mesh generation techniques, the geometries we

obtained are always in the form of polygonal meshes. Besides polygonal meshes, spline is another widely used

representation of freeform geometry, especially in Computer Aided Design (CAD), Computer Aided Manu-

facturing (CAM), and Computer Aided Engineering (CAE). Spline representation has many good properties,

such as high geometric accuracy and high order continuity. Recently, a spline-based analysis method named

isogeometric analysis was developed, which shows great advantages over traditional finite element analysis. To

improve the geometric accuracy and continuity, and also to make the model compatible with CAD systems and

isogeometric analysis, it is always desirable to convert the polygonal meshes into continuous, high-order spline

surfaces.

In this talk, we present a novel method for converting any unstructured quadrilateral or hexahedral mesh to a

T-spline surface or solid T-spline. The T-spline definition is generalized based on the rational T-spline basis

functions. Based on this generalized definition, our conversion algorithm contains two stages: the topology

stage and the geometry stage. In the topology stage, the input quadrilateral or hexahedral mesh is taken as the

initial T-mesh, templates are designed for each quadrilateral element type in 2D or for each hexahedral mesh

node in 3D in order to get a gap-free T-spline. In the geometry stage, an efficient surface fitting technique is

developed to improve the surface accuracy with sharp feature preserved. Finally, a Bézier extraction technique

is used to facilitate T-spline based isogeometric analysis.
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The Finite Cell Method (FCM) [1, 2] can be considered as an embedding or fictitious domain method combined

with high-order finite elements [3]. In this embedding method, the mesh is not necessarily conforming to the

boundaries of the physical domain. Applying the FCM, the boundary is extended to a simple domain which can

be discretized easily utilizing a Cartesian grid of cells. The geometry is accounted for during the integration of

the stiffness matrices and the accuracy of the approximation is controlled by increasing the polynomial degree

of the shape functions of the cells. Thus, the effort of meshing complex domains is replaced by the task to

accurately perform the numerical integration of the cells.

The FCM enjoys fast convergence in terms of the degrees of freedom when performing a p-extension. However,

the computational cost of the method depends strongly on the integration scheme. Fast and accurate integration

of discontinuous functions is still a challenge for all fixed mesh finite element based methods, including the

FCM. Several integration schemes will be examined and modifications will be proposed for discontinuous

integrands. The adaptive integration schemes will be compared for problems of two- and three-dimensional

elasticity. In addition we will also extend the FCM to elastoplastic problems and investigate its performance

for this type of nonlinearity.
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In this research, we present Discontinuous Petrov-Galerkin (DPG) finite element methods for static and time-

harmonic linear elasticity. For both cases, we define optimal test functions which are shown to deliver the

best approximation error if an optimal global test norm is used. To make the methods practical, we use a

localizable test norm. In the static case, it can be shown that this norm is equivalent to the global optimal norm.

The majority of this proof is the verification that the inf-sup condition holds for the DPG formulation using

the localizable test space norm. From DPG theory, this proves our method is quasi-optimal with a constant

independent of the mesh. We can then use results from approximation theory to show h and p convergence for

the static case.

Using the localizable test space norm, we have implemented the static formulation and show h and p conver-

gence of the method at optimal rates. Additionally, the DPG framework provides an a posteriori error estimator

determined by solving local auxiliary variational problems. We use this estimator as the basis for various greedy

adaptive schemes. We test our adaptive algorithm using a manufactured smooth solution as well as a singular

solution L-shape domain problem and observe adaptive h and hp convergence.

The method can also be extended to time-harmonic elastic wave propagation problems. A key feature of the

DPG method is the reduction of pollution error, and can therefore be used to solve problems with a large number

of wavelengths. Due to this fact, we will present numerical results for time-harmonic elastic wave problems

with high wave numbers.

The principal contributions of this research are proving p convergence for the dual-mixed static elasticity sys-

tem, particularly without the need for a discrete exact sequence or commuting diagram, as well as a practical

adaptive 2D time-harmonic elasticity code with a posteriori error estimation which can be used for high wave

number problems. In this poster, we will present an overview of the theoretical DPG framework, the specific

formulation for both static and time-harmonic elasticity, and the numerical results for both cases.
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A Multiscale Finite Element Method (MSFEM) for wave propagation in locally periodic media, e.g., Photonic

Crystals (PhC), will be presented [2]. We consider wave propagation at wavelengths of the size of the local

periodicity. In this case homogenisation techniques are not applicable. The MSFEM is g-FEM variant [1, 3, 4],

which uses two-scale basis functions inside the PhC. As micro functions we use Bloch modes, which are

computed as FEM solutions for a fully periodic PhC [5]. The macro functions are piecewise polynomials of

degree pmac which are supported over many periods of the crystal. We will numerically show that such a

multiscale basis is very efficient as only a constant number of these functions are needed to simulate arbitrary

large, finite PhCs with a constant L2-error. In contrast, for standard discretisation schemes like h-, p- or hp-FEM

more and more basis functions are required when the number of scatterers increases inside the computational

domain. We will explain how to use this multiscale basis to construct a conforming FEM which is coupled

to a discretisation of the exterior domain. In particular, we will show how to numerically integrate the highly

oscillatory two-scale functions with constant computational effort. We will verify the properties of the MSFEM

by numerical experiments for PhC bands (see Fig. 1), an infinite band of locally-periodic dielectric scatterers

in 2D.

PhC

exterior domain

exterior domain

global periodicity domain

computational domain

Figure 1: An example Photonic Crystal band
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The finite element method provides an efficient framework for the numerical solution of partial differential

equations. Its performance can be improved by mesh refinement (h-refinement) or the use of higher order

ansatz spaces (p-refinement). A combination of both (hp-refinement) can lead to exponential convergence

rates of the computed solution.

Nowadays adaptive refinement of the computational domain is a widely used feature to obtain an accurate nu-

merical solution of the partial differential equation with as less computational work as possible. Therefore one

needs to decide, where the approximation error of the numerical solution is relatively large and, thus, refine-

ment should take place. Since the analytic solution is usually not known, one has to estimate the approximation

error in terms of the numerical solution to be able to decide which areas of the computational domain have to

be refined further.

In recent years a broad interest in the numerical solution of Maxwell’s equations has come up, because this

system of equations appears in a lot of nano-scaled processes due to the presence of an electromagnetic field.

Solving these equations numerically usually requires a lot of computational work and a fully automatic hp-

adaptive refinement strategy can reduce the amount of work, which is related to solving the stationary problems,

significantly. We present an hp-efficient residual-based a posteriori error estimator for Maxwell’s equations in

the electric field formulation, which gives a reliable and robust estimation of the true energy error. The per-

formance of our error estimator is compared to other, well-known, a posteriori error estimators for Maxwell’s

equations and its application in h- and p-adaptive refinement strategies is shown. This hp-efficient a posteriori

error estimator is a first step towards an hp-adative refinement strategy, which produces a sequence of conform-

ing finite element spaces such that the numerical solution of the partial differential equation converges with an

exponential rate to the analytic solution of the problem.
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Isogeometric Analysis is a non-standard numerical method for partial differential equations (PDEs), which was

introduced by T. J. R. Hughes in [1]. In the isogeometric framework, the ultimate goal is to adopt the geometry

description from a Computer Aided Design (CAD) parametrization, and use it for the analysis, that is, within

the PDE solver. Non-uniform rational B-splines (NURBS) are a standard in CAD community mainly because

they are extremely convenient of the representation of free-form surfaces and there are very efficient algorithms

to evaluate them, to refine and derefine them. In IGA, those same basis functions (that represent the CAD

geometry) are also used as the basis for the discrete solution space of PDEs, thus following an isoparametric

paradigm. IGA methodologies have been studied and applied in fields as diverse as fluid dynamics, structural

mechanics and electromagnetics.

Domain decomposition methods are a major area of recent research in numerical analysis for PDEs. They

provide robust, parallel and scalable preconditioned iterative methods for the large linear systems arising in

discretizaton of the continuous problems.

In this poster, we propose overlapping additive Schwarz methods for elliptic problems in Isogeometric Analysis.

We construct additive Schwarz preconditioners both in the parametric space and in the physical space and also

prove that our proposed methods in multi-dimensions are scalable. Moreover, we present a set of numerical

experiments, including the case with discontinuous coefficients, which is in complete accordance with the

theoretical developments.
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In this poster we will present findings from a study conducted to improve our understanding of the cost

associated with solving linear systems resulting from isogeometric analysis–where each basis possesses higher

order continuity than conventional finite element analysis.

Isogeometric analysis has received a lot of attention in recent years, originally motivated by the desire to find a

method for solving partial differential equations which would simplify, if not eliminate, the problem of

converting geometric discretizations in the engineering design process. Tangential to the benefits of

geometry/analysis unification, the method is also well suited for solving nonlinear and higher-order PDE’s due

to its higher-order continuity. A wide variety of application areas have taken advantage of the strengths of

isogeometric analysis. These applications include structural vibrations, fluid-structure interaction,

patient-specific arterial blood flow, complex fluid flow and turbulence, shape and topology optimization, phase

field models via the Cahn-Hilliard equation, cavitation modeling, and shell analysis

This initial study focuses on the use of direct solvers, specifically MUMPS. Direct solvers were chosen for this

work for several reasons. First, while implementations of direct solvers vary, the algorithm is still

LU-factorization and therefore the trends apply for a wide variety of direct solvers. Also, direct solvers are

important for problems with multiple right-hand sides, such as goal-oriented adaptivity or inverse problems.

The results show that degrees of freedom in systems whose basis possesses higher degrees of continuity can

cost 2-3 orders of magnitude more time and memory to solve. This is due to the matrix becoming more dense

as continuity approaches its maximum, at Cp−1. This finding adds a dimension of complexity in the choice of

refinement scheme. While k-refinements are economic in terms of degrees of freedom, each degree of freedom

costs more to solve in a direct solver.
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The main promise of the Discontinuous Petrov-Galerkin Method with Optimal Test Functions introduced by

Demkowicz and Gopalakrishnan in [1] is that the discrete problem automatically inherits stability from the

continuous one. This fundamental property, true for any linear problem described with a system of first order

PDEs, is accomplished by computing on the fly, element by element, optimal test functions. The method can

be interpreted as a special least squares method for the operator equation:

Bu = l, B : U →V ′

, l ∈V ′

Here U and V are two Hilbert spaces and V ′ denotes the dual of V . Given a finite-dimensional trial subspace

Uh ⊂U , the approximate solution uh is obtained by minimizing the residual in the dual space,

‖Buh − l‖2
V ′ → min

Recalling that Riesz operator RV : V → V ′ is an isometry, we can replace the dual norm in the minimization

problem with the test norm,

‖R−1(Buh − l)‖2
V → min

The minimization problem is then equivalent to the variational problem,

(R−1(Buh − l),R−1Bδuh)V = 0, ∀δuh ∈Uh (1)

or, equivalently, a Petrov-Galerkin discretization of the original problem

< Buh,vh >=< l,vh >, ∀vh (2)

with optimal test functions vh = R−1Bδuh that are obtained by solving the auxiliary variational problem:

(vh,δv)V =< Buh,δv >, ∀δv ∈V (3)

The first critical point for the practicality of the approach is the use of discontinuous test functions which en-

ables the elementwise inversion of the Riesz operator. This implies the use of ultra-weak variational formulation

resulting in a hybrid method: on top of standard (field) variables, we need to solve for traces and fluxes that

live on interelement boundaries (the mesh skeleton). Obviously, the method depends upon the choice of the test

norm. Different test norms lead to different mapping (continuity) properties for the original problem that are

then inherited by the DPG method. The problem of choosing the right test norm becomes critical for singular

perturbation problems where we strive not only for the stability of the discretization but also for robustness. i.e.

a stability that is uniform with respect to the perturbation parameter. We shall use the convection-dominated

diffusion problem to demonstrate how one systematically introduce different test norms that guarantees the

robustness. This brings us to the second critical point of the approach. In practice, the optimal test functions

are determined only approximately by using a Bubnov-Galerkin approximation to problem (3) in an enriched

space, a standard practice in implicit a-posteriori error estimation. Some obvious choices of test norms guaran-

teeing robustness lead to optimal test functions that exhibit boundary layers (depending upon the perturbation

parameter) that are difficult to resolve. We will show how to construct a test norm that does not have this

property and leads to optimal test functions that can be easily resolved using the enriched spaces. The work

generalizes the 1D construction reported in [2].
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The aim of our research project is to examine the applicability of isogeometric Finite Element Analysis for
daily use in structural analysis. For this purpose surface elements are used as those prevail in most engineering
applications. Regarding the basics of Isogeometric Analysis and element formulations see e.g. [1] and the
references therein. Imposing boundary conditions, handling of different kinds of loads and connection of
neighboring domains are for practical use of outstanding importance. This contribution focuses on the weak
imposition of Dirichlet boundary conditions and connection of multiple patches and compares the results to
strong imposition.

The studies are conducted in a self-developed MATLAB isogeometric framework. This allows for a maximum
of control and flexibility. For the sake of simplicity plane shell elements are used, as the focus is laid on
boundary and transition conditions. The results are easily transferable for more complex elements. In the case
of weak imposition the treatment of boundary and transition conditions is quite alike and realized with the
Lagrange Multiplier method and with the Perturbed Lagrangian method as described in [2]. For both the weak
form of equilibrium is enriched with additional terms to constrain deformations. Consistent tangent matrices
and residua are derived. The implementation is realized with connection elements on NURBS curves. The
results of standard benchmarks are compared to computations with strong imposition, i.e. shared degrees of
freedom for the connection of patches and elimination of degrees of freedom for Dirichlet boundary conditions.

Computations using the Lagrange Multiplier method show exactly the same mesh convergence as correspond-
ing systems with strong imposition. Convergence rates for geometries with hanging nodes are compared to
convergence rates of conforming meshes. The parameterization of the connection elements and the selection of
active Lagrange degrees of freedom have to fulfill certain requirements to generate a well-conditioned system
of equations. The results for the Perturbed Lagrangian method depend on the choice of the penalty parameter
α. For an appropriate α the mesh convergence is indistinguishable from the Lagrange Multiplier method and
quadratic convergence in nonlinear computations can be observed. In nonlinear computations it is possible to
adapt α with the help of displacement norms.

The results clearly show that both presented methods are convenient to impose boundary conditions and connect
patches in linear and nonlinear computations. The Lagrange Multiplier method has two major drawbacks. The
structure of existing FEA-codes has to be modified for the additional unknowns. Furthermore the indefiniteness
of the stiffness matrix due to zeros on the diagonal requires specialized solvers. The Perturbed Lagrangian
method does not require special solvers nor a changed structure of the FEA-code. The only drawback is the
need to determine the penalty parameter. Despite these disadvantages the presented weak connection methods
seem to be the only feasible way for the connection of non-conforming meshed patches, which is a prerequisite
for local refinement. The tensor product character of NURBS surfaces leads to quadrilateral meshes. A direct
connection of patches would require all control points of the considered edge of both patches to coincide. It is
possible to create triangular patches at the interface between patches, but this would infringe the isogeometric
idea as the geometry had to be altered for analysis.
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A boundary conformal approach for solving three dimensional electro-quasistatic problems with a high order

Discontinuous Galerkin (DG) method on Cartesian grids is proposed. The material boundary subdivides the

Cartesian grid cells into sub-cells which are associated with (at least) two different sets of material parameters.

We will refer to them as cut-cells. The challenge consists in deriving an appropriate numerical approximation

within these cells. Since no general set of basis functions satisfying continuity conditions can be defined for an

arbitrarily shaped cut-cell, the standard Continuous Galerkin Finite Element Method (CG-FEM) formulation

cannot be applied. Instead, we propose a formulation based on the high order DG method as introduced in [1].

The cut-cell approach can be naturally embedded within the DG framework which does not impose conformity

conditions on the approximation spaces. In the present implementation, for each sub-cell, a set of independent

high-order hierarchical basis functions proposed in [2] is specified. The basis functions within the sub-cells are

chosen to be identical with those in the parent Cartesian cell.

The numerical evaluation of the DG integrals, however, needs an appropriate description for the cut-cell geome-

try. For this purpose, the Open CASCADE geometry kernel [3] is used. It enables a geometrical representation

of the cut-cells based on parameterized Bezier and B-Spline surfaces. Furthermore, a particular numerical

quadrature technique is applied which allows for an accurate integration of the finite element operators taking

into account the exact geometry of the cut-cells.

Depending on the problem geometry cut-cells with small sub-cell volumes may occur which effect the con-

dition number and cause solver convergence problems. In order to handle this problem, a merging method is

introduced which merges small sub-cells with the neighboring Cartesian grid cell that has the largest shared

surface. Consequently, the condition number of the system decreases significantly.

Finally, a hybridization method is proposed which sets up a relation between the CG-FEM and the DG so-

lution space. The DG degrees of freedoms in normal Cartesian grid cells are reduced to CG-FEM degrees

of freedoms by the topological projection operators introduced in [4]. This approach reduces the degrees of

freedom in homogenous domains substantially and makes the method more efficient.

Numerical examples are presented which demonstrate the optimal convergence rate, P+ 1, where P is the

highest degree of polynomials of the method for any approximation order and problem geometry.

The strength of the boundary conformal approach consists in its capability to obtain high order accuracy solu-

tions on arbitrary domains with trivial meshes. The discrete problem formulation is simple and straightforward

to implement.
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In this contribution, an automatic hp-adaptivity for three dimensional (3D) closed domain electrodynamic prob-

lems is presented. It is based on the work on hp-adaptivity leaded by Prof. Demkowicz of the University of

Texas at Austin, [1]. The three dimensional hp-strategy supports anisotropic refinements on irregular meshes

with hanging nodes, and isoparametric elements. Specifically, it makes use of hexaedral elements and H(curl)

higher order discretizations. In the poster presentation, results of its application to the double-curl vector

formulation in the context of waveguiding problems will be shown. Specifically, the results will include the

characterization (in terms of its scattering parameters) of several rectangular waveguide discontinuities used

in microwave engineering. Exponential convergence of the error in the energy norm will be shown.. In the

following figures, some results of the analysis of the electromagnetic field distribution in a petri dish with a cell

culture inside a rectangular waveguide are presented. The effect of the meniscus, which has a sensible influence

in the electromagnetic field distribution, is observed.
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Figure 1: Petri dish problem

References

[1] L. Demkowicz, J. Kurtz, D. Pardo, M. Paszynski, W. Rachowicz, and A. Zdunek, Computing with hp Finite

Elements. II Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications. Chapman

& Hall/CRC Press, Taylor and Francis, 2008.

53



HOFEIM 2011, Cracow, Poland 

ON REGULARIZATION AIDED  

HO MULTIPOINT SOLUTION APPROACH 

Irena Jaworska

ICCE, Cracow University of Technology, Poland 

E-mail: irena@L5.pk.edu.pl

KEYWORDS: higher order approximation,  multipoint approach, regularization 

The higher order approximation multipoint technique in the meshless FDM is considered. It is based on 

arbitrary irregular meshes, MWLS approximation [5] and the global, local or global-local formulations of 

b.v. problems [4].  

In the multipoint formulation, following the original Collatz [1] multipoint concept, the meshless FDM 

(MFDM) difference operator Lu is obtained by the Taylor series expansion of unknown function  u

including higher order derivatives and using additional degrees of freedom at nodes. For this purpose one 

may apply e.g. combination of the right hand side values if  of the considered differential equation (which 

are known values) at any node of each MFD star using arbitrarily distributed clouds of nodes:  

.       i i ij j ij j i

j j

u Lu c u f Lu Mf! " # $ #% %&L i

It is the basic formula for the multipoint specific formulation. Here,   j – number of a node in a selected 

FD star, Mfi  – a combination of the equation right hand side values, if  – may present value of the whole 

operator    or a combination with its derivatives. In the general multipoint method, a specific derivative  

 (a part of the whole operator  only) is used as additional d.o.f. instead of the right hand side of the 

given differential equation  
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Application of the specific approach is mainly restricted to the linear b.v. problems. The general 

formulation is more complex but it may be used for all types of b.v. problems (e.g. for non-linear ones). 

Unfortunately, one may encounter ill-conditioning phenomenon of the system of MFDM algebraic 

equations, when the general multipoint formulation is considered for two-dimensional problems [3]. 

Such situation happens e.g. when we evaluate higher order derivatives with the respect to  y  by using 

nodal values of u  and ux  as d.o.f. One may avoid such situation assuming such d.o.f. of the MFD star, that 

allow for evaluation of all partial derivatives up to  p-th order. Each time the critical question is the ability of 

inversion of the basic matrix involved in generation by MWLS approximation of the MFD formulas. In the 

case of PDE have been proposed and tested several different general versions of multipoint algorithm 

therefore. However, the problem of their effectiveness is the main issue now. 

The simplest solution in this situation could be using a regularization term [2] in the weighted error 

functional built for the MWLS approximation. The preliminary tests of regularization used in multipoint 

approach analysis were carried out. Results of tests and their comparison with those obtained for the previous 

developed general multipoint versions are encouraging. The method of regularization is under current 

investigation.
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Isogeometric analysis as introduced by Hughes et.al [2] in 2005 is quickly growing into a mature research field.
Using NURBS as basis functions in a finite element method has shown to have some remarkable advantages, not
only for their superior properties of representing complex geometries, but also for their numerical properties.
NURBS is however limited to tensor product configuration, making local refinement inherently a hard problem
to solve. Over the years, several techniques have been employed to solve this. T-splines as introduced by
Sederberg et.al [3] in 2003 was one of the recent contributions to this research field and have seen a lot of
attention from computer aided engineering (CAE). T-splines was, as the years indicate, developed prior to
isogeometric analysis, and its use in finite element problems have not been entirely straightforward. Later years
have seen the birth of another approach in the Locally Refined B-splines (LRB-splines) by Dokken et.al [1] in
2011. We will investigate the use of LRB-splines as a basis for doing finite element computation, and also their
ability to do local refinement.

Both T-splines and LRB-splines refinement schemes are in general propagating, but this is due to fundamentally
different reasons. This means that typically when inserting continuity reduction lines in a mesh, the methods
will require more lines than you request. This effect can be diminished by certain techniques, and we will
illustrate how to achieve ”perfect” local refinement in the sense that knot lines does not propagate at all.

LRB-splines open up several design parameters when creating refinement schemes, namely:

• which basis functions with support on the element to refine
• the location of the element split
• the multiplicity of the inserted knot lines
• (degree elevation)

We will take an in depth look at what effects different refinement techniques have on our solution algorithms
when used as a basis for finite element computations.
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Figure 1: Diagonal ”perfect” re-
finement

Figure 2: L-shape singularity Figure 3: Front solution
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This poster presents concepts for the implementation of constrained approximation for conforming hp-adaptive

finite element schemes with non-matching, unsymmetric refinements and multi-level hanging nodes.

In order to apply conforming finite element schemes to meshes with hanging nodes, certain measures need to

be taken to ensure continuity. Complex refinement patterns possibly created by additional local refinements

can be avoided by constraining the associated degrees of freedom via the well-acknowledged approach of

constrained approximation, cf. [1, 2, 3]. For this, a representation of shape functions in terms of transformed

shape functions, given by so-called constraint coefficients, is necessary, cf. [4, 5]. The refinement of mesh

elements containing hanging nodes may lead to multi-level hanging nodes which significantly complicates the

derivation and implementation of constraint coefficients if no further restrictions such as 1-irregularity of the

mesh or symmetry of the refinements are imposed, cf. [1, 6, 7]. Additional difficulties arise when adjacent

elements are refined using unsymmetric, non-matching refinements, i.e. their common edge is refined in two

different ways resulting in four partly overlapping constrained edges.

We present an hp-FEM implementation which handles arbitrary non-matching refinements with multi-level

hanging nodes. Using recursive formulas for constraint coefficients, the coupling of constrained degrees of

freedom to their constraining degrees of freedom is computed using a globally defined connectivity matrix.

This approach entirely avoids the need for mesh regularization allowing for an almost unrestricted choice of

refinement schemes.
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[5] Schröder, A., Constraints coefficients in hp–FEM. Numerical mathematics and advanced applications.

Proceedings of ENUMATH 2007. 183–190, Springer, 2008.
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Improving the efficiency and accuracy of the computed stresses, the variable of primary interest in many en-

gineering applications, is still a demanding task. The application of the the two-field dual-mixed variational

principle of Fraeijs de Veubeke is demonstrated for plane and plate problems in [1,2] and for cylindrical shells

in [4].

The derivation of our cylindrical shell model is based on Fraeijs de Veubeke’s variational principle [3] with

functional

F (σ
pq

,φpq) =

Z

V

[

Wc (σ
pq

)+φpqσ
pq

]

dV −

Z

Su

ũpσ
pqnq dS, (1)

where σ
pq is the not a priori symmetric stress tensor, φpq is the skew-symmetric (infinitesimal) rotation tensor,

V denotes the volume of the body bounded by surface S = Su ∪ Sp (Su ∩ Sp = /0) and ũp is the prescribed dis-

placement vector on the surface part Su. The complementary strain energy is given by Wc(σ
pq

) =
1

2
σ

kℓC−1
kℓpqσ

pq
,

where C−1
kℓpq is the fourth-order elastic compliance tensor. The subsidiary conditions to functional (1) are the

translational equilibrium equations σ
kℓ

;ℓ
+ bk

= 0 and the stress boundary conditions σ
kℓn

ℓ
= p̃k on Sp, where

bk is the density vector of the body forces and p̃k is the prescribed surface traction vector on the surface Sp with

outward unit normal n
ℓ
. The skew-symmetry condition for the rotation tensor, φpq + φqp = 0, is an additional

subsidiary condition. The displacement boundary conditions on the surface Su are imposed weakly. The tensor

of first-order stress functions Ψ
k
.p is applied to satisfy translational equilibrium equations: the stress tensor is

expressed by equation

σ
kℓ

= ε
ℓpq

Ψ
k
.q;p + σ̂

kℓ
, (2)

where ε
ℓpq is the third-order permutation tensor and σ̂

kℓ
;ℓ

= bk.

To derive a dimensionally reduced shell model, all the variables are expanded into power series with respect to

the thickness coordinate. The approximation of the stresses through the thickness follows from the structure of

the translational equilibrium equations (written in terms of the expanded stresses). A shell model derived in this

way makes the application of the classical kinematical hypotheses (regarding the deformation of the normal to

the shell middle surface) unnecessary. The numerical performance of a new dual-mixed hp-version shell finite

element is investigated and presented for cylindrical shells. It will be shown that this element gives reliable and

accurate stress computations not only for higher-order p-, but also for low-order h-type approximations.
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This contribution is intended to encourage a discussion on the geometric description of computational models,

the necessity to generate conforming meshes and how to avoid them.

Mesh generation for structural analysis is still an important issue. As pointed out by Cottrell et. al [1], 80%

of the total time spent for the analysis is devoted to the creation of a suitable geometry and the generation of a

computational mesh. Only 20% of the total time are actually spent for the analysis itself. This ratio has been

even more unfavorable for high order methods, especially for complicated geometries.

To ease this issue, the authors are involved in the development of a mesh generator. It is currently capable

of generating hexahedral, high order meshes for thin walled, curved geometries. In this contribution, we will

present some geometrically elaborate examples and demonstrate the techniques with which corresponding,

conforming meshes were created.

On the other hand, two different but combinable strategies exist to avoid the generation of meshes all together:

In Isogeometric Analysis [1] the aim is to compute directly on a geometry represented by NURBS by utilizing

the same higher order shape functions in the analysis. One, thus, avoids having to generate a conforming mesh

by drawing it. This leads to relatively coarse meshes but finer ones may be generated by a regular subdivision

if the solution demands so.

In the Finite Cell Method [2], even very complex geometries of the physical domain can be taken into account

at the integration point level. For this purpose, high order shape functions are spanned by a Cartesian grid

which embeds the structure to be computed. The geometrical description in the finite cell method does not

necessarily need to stem from an analytical formulation. Instead, BREP models of any kind suffice. Equally

well, any form of implicit geometric descriptions such as voxel models or models based on space trees may be

used without difficulty. This adds flexibility, especially in three dimensions where conform mesh generation

can be a challenging task. Examples demonstrating the features of this approach will be presented.
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The spatial discretization of elastic continuum by finite element method (FEM) [1] introduces dispersion errors

to numerical solutions of stress wave propagation. When these propagating phenomena are modeled by FEM

the speed of a single harmonic wave depends on its frequency and thus a wave packet is distorted. Moreover, the

oscillations near the sharp wavefront in FE solution (called Gibb’s effect) appears. For higher order Lagrangian

finite elements there are the optical modes in the spectrum resulting in spurious oscillations of stress and ve-

locity distributions near the theoretical sharp wavefront [2]. Furthermore, the high mode behaviour of classical

finite elements is divergent with order of approximation of a field of displacements.

The modern approach to FEM presents isogeometric analysis (IGA) [3]. This numerical method uses spline

basic functions as shape functions. IGA approach shows very good frequency and dispersion properties [3]

due to the smooth approximation of a displacement field. Therefore, the high mode behaviour of B-spline

FEM is convergent with polynomial order of approximation [3]. In this contribution, B-spline FEM is tested

in one-dimensional axial propagation of elastic wave in a bar under force loading by Heaviside step function

(Fig. 1). The response of the elastic bar is computed numerically by modal superposition method with respect

to all eigenfrequencies and by Newmark method (the average acceleration method) [1]. In Fig. 1, the stress σ

along this bar discretized by linear (p = 1) and cubic (p = 3) B-spline and Lagrangian finite elements is depicted

for time t = 0.5L/c0. For the B-spline approach, uniformly-spaced and Greville control points are employed.

Time step ∆t for Newmark method is chosen by Courant number Co = ∆tc0/Hmin = 0.25, where Hmin is minimal

distance between control points or nodes. For all models, number of degrees of freedom is 201.

-
t

6
σ̄(t)

σ0 = 1Pa

Figure 1: Response of elastic bar under shock loading for different types of discretization and time integration.

In the numerical test, the oscillations near the sharp wavefront for B-spline based FEM are smaller than for

classical FEM due to the variation diminishing property. IGA concept has a potential to be efficiently emloyed

in high performance and accurate FE analysis of linear and nonlinear wave propagation problems.
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In our work we investigate opportunities for parallel implementation of numerical integration algorithm on 

PowerXCell 8i processors [1].  These processors are a transitional form between the classical architecture of 

processors and the architecture of GPUs. With fast local memory that can be managed at a user level and eight 

vector cores it is possible to achieve high performance for many complex scientific calculations. 

In the paper we consider the algorithm of numerical integration for higher order finite elements [2]. We design 

and implement several parallelization strategies for higher order prismatic elements and test their performance 

for different situations. The different strategies are based on different loops in the integration algorithm for 

which parallelization is applied. Parallelization strategy I is based on the loop over elements, strategy II is 

based on the loop over integration points and strategy III is based on parallelization of the outer loop over basis 

functions [3].

The  parallel  algorithms  are  tested  for  discontinuous  Galerkin  finite  elements  with  different  degrees  of 

approximating polynomials. The results show the potential for speed-up and indicate critical places in the 

algorithm and some peculiarities of the PowerXCell 8i processor and its programming model.

As a result of our investigations and tests we received complex analysis of performance obtained from using 

heterogenous processing units with specialized vector coprocessors. This results can be used as a guideline for 

choosing the proper parallelization strategies for different orders of finite elements in differents problems.
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The success of the traditional Ritz-Bubnov-Galerkin finite element method in most structural problems is based

on the so called best approximation property. This means that the difference between the finite element solution

and the exact solution becomes minimized with respect to certain norm, often called as the energy norm. The

property follows largely from the symmetry of the stiffness matrices that the method produces.

Numerical problems arise when the best approximation property (or the energy norm in the first place) is lost for

some reason. This happens, for instance, when the standard Galerkin method is applied to convective transport

problems. In these problems, the system matrix associated to convection is not symmetric and numerical

solutions tend to show spurious, non-physical oscillations unless the finite element mesh is heavily refined.

This work concerns the finite element analysis of convection dominated flow problems within the recently

developed Discontinuous Petrov-Galerkin (DPG) variational framework, see [1]. We demonstrate how test

function spaces that guarantee numerical stability can be computed automatically with respect to the so called

optimal test space norm. This should make the DPG method not only stable but also robust, that is, uniformly

stable with respect to the Péclet number in the current application, cf. [2,3]. We employ discontinuous piecewise

Bernstein polynomials as trial functions and construct a subgrid discretization that accounts for the singular

perturbation character of the problem to resolve the corresponding optimal test functions. We also show that a

smooth B-spline basis has certain computational advantages in the subgrid discretization.
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The Runge-Kutta Discontinuous Galerkin (RK-DG) methods are ideally suited for high-order approximation

[1]. The RK-DG method is stable when applied to linear hyperbolic problems but when the problem is nonlinear

spurious oscillations occur near strong shocks or steep gradients. Then the usual approach to calculations of

numerical fluxes is very often not sufficient to stabilize the solution for large high-order elements. Various

attempts to use slope limiters with a shock detectors to overcome this problem were proposed recently. When

DG method is limited most methods reduce the solution to first-order accuracy and much of the advantage of

high-order methods is lost [2].

In the present contribution the stream upwind Petrov Galerkin approach, which includes the perturbation of

the flux at the boundaries is combined with the nodal discontinuous Galerkin method [3]. The combination is

accomplished after discretization in space by using double integrations by parts of the governing equations. This

distinguishes the methods from other approaches which incorporate artificial diffusion directly into problem

formulation. The advantage of this type discretization relies on increased locality in data dependencies, which

leads to more accurate solution representation. The method does not use slope limiters or shock capture terms.

The flux derivatives are converted into Jacobian matrices. The form of equations is similar to flux reconstruction

(FR) approach [4] and lifting collocation penalty formulation, which is extension of FR to unstuctured meshes

[5]. These approaches however solve the conservation laws in the differential form instead of the integral form.

The present DG approximation is accomplished by using polynomial shape functions of high-orders while

keeping the stencil local. The integrations are performed using Gaussian integration of moments. The time

discretization is achieved using selection of explicit strong stability preserving Runge-Kutta methods. The

new schemes have been verified on several benchmark computational test cases (Burger and Euler equations

for compressible flow) for discontinuous and continuous initial valued problems. The stability limit has been

established using Von Neumann stability analysis. The technique ability to capture the discontinuous shock

waves in hyperbolic flow problems is demonstrated using various examples.

The examples demonstrate that the present scheme can work with higher CFL number than the classical DG

method. The higher CPU time disadvantaged DG methods when compared with other higher order methods

such as spectral volumes due to restrictive nature of an approximate CFL condition for linear stability of RK-

DG method [1]. The higher CFL number feature of the present approach is especially important when the order

of polynomials spatial discretization increases. The method is highly compact and can easily handle adaptivity

strategies allowing to use different polynomials between elements. The simulation can be partitioned into

independent operations using modern graphics processing units (GPU).

REFERENCES

[1] B. Cockburn and C.-W. Shu. Runge-Kutta discontinuous Galerkin methods for convection-dominated

problems. Journal of Scientific Computing, 16(3):173-261, 2001.

[2] L. Krivodonova. Limiters for higher-order discontinuous Galerkin methods. Journal of Computational

Physics, 226:879-896, 2007.

[3] E.I. Elhadi, A.F. Nowakowski and N. Qin. Streamline Upwind Petrov Discontinuous Galerkin Method

(SUPDG) for conservation laws. Submitted to Journal of Computational Physics, 2011.

[4] H.T. Huynh. A Flux Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin

Methods. 18th AIAA Computational Fluid Dynamics Conference, Miami, FL, 2007.

[5] Z.J. Wang and H. Gao. A unifying lifting collocation penalty formulation including the discontinuous

Galerkin, spectral volume/difference methods for conservation laws on mixed grids . Journal of Computa-

tional Physics, 228: 8161-8186, 2009.

62



HOFEIM 2011, Cracow, Poland

Numerical integration on GPUs for higher order finite elements

Przemysław Płaszewski1, Paweł Macioł2, Krzysztof Banaś12
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Numerical integration forms one of necessary steps in finite element calculations. The terms from a weak

statement of a problem are integrated to form entries in the global stiffness matrix. Then the system of linear

equations, with the stiffness matrix as the system matrix, is usually solved leading to the approximate solution.

On one hand, numerical integration is an embarrassingly parallel algorithm - integrals over the computational

domain are sums of integrals over individual elements. Calculations for different elements are independent and

can be done in parallel. Moreover, for many problems, like e.g. linear problems with constant coefficients and

linear approximation, numerical integration can be simplified and some precomputed quantities used in codes.

There are however problems and approximations - e.g. non-linear problems, problems in domains with curved

boundaries, higher order or hp-adaptive approximations - where numerical integration has to be performed

step by step. These are usually also the cases in which numerical integration forms a substantial part of finite

element calculations - both in terms of required CPU time and RAM memory. We concentrate on such cases,

using model problems of standard continuous FEM for linear elasticity and discontinuous Galerkin FEM for

scalar elliptic equation, both with higher order approximation.

We investigate the opportunities for using GPUs to perform numerical integration for finite element simulations.

The degree of concurrency and memory usage patterns are analysed for different types of finite element approx-

imations. The results of numerical experiments designed to test execution efficiency on GPUs are presented.

We draw some conclusions concerning advantages and disadvantages of off-loading numerical integration to

GPUs for finite element calculations.
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Lecture Notes in Computer Science, Volume 6067, 411-420. Springer, 2001.

63



HOFEIM 2011, Cracow, Poland

ISOGEOMETRIC ANALYSIS IN PLASMA PHYSICS

AND ELECTROMAGNETISM

RATNANI Ahmed1, SONNENDRUCKER Eric2, CROUSEILLES Nicolas 3

1INRIA-Nancy Grand Est, Projet CALVI

E-mail: ratnani@math.unistra.fr
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In this work, we will present some applications of the IGA approach in Plasma Physics simulation and electro-

magnetism, specially the time domain problem. To this purpose, we have developed a Python library, namely

PyIGA.

In many problems in Plasma Physics, e.g. applications in the ITER project, we must deal with the complexity

of the tokamak geometries. IGA seems to be an excellent approach to treat these problems. We have studied

the gyrokinetic quasi-neutrality equation, [1], and also some MHD equilibrium problems, [2].

For the Maxwell time domain problem, we developed, [3], a new formulation of the exact sequence of Finite

Element spaces based on splines, introduced by Buffa et al. [4], having the same properties as the Whitney

Finite Element spaces traditionally used for the Finite Element solution of Maxwell’s equations. As with the

Whitney elements, one of Ampere’s or Faraday’s law can be discretized with a relation between the spline

coefficients of the electric and magnetic fields independent of the topology of the mesh. The metric comes

in through a discrete Finite Element Hodge operator which appears as the mass matrix involved in the other

equation. This method allows us to inverse only one matrix at each time step.

We propose also a new strategy, namely the Fast IGA approach, specific to a large variety of domains, to solve

some important problems: Maxwell’s equations, current-hole problem, and more generally any problem where

we need to inverse the mass matrix at each time step. In Figure 1, we present the typical CPU time needed for

the Poisson’s equation on a ring domain.

Spline degree FIGA SPLU

1 0.012 0.013

2 0.014 0.046

3 0.014 0.073

4 0.013 0.098

5 0.015 0.124

6 0.015 0.152

7 0.015 0.179

Spline degree FIGA SPLU

1 0.008 0.38

2 0.013 3.81

3 0.012 10.69

4 0.016 19.17

5 0.017 31.95

6 0.020 47.01

7 0.023 65.00

Figure 1: CPU-time, in seconds, spent in solving (left) and initializing (right) the linear system, using the new

approach, namely Fast IGA, compared to SuperLU. Test done on a grid 128×128
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Shape sensitivity analysis is an important tool for boundary shape optimization and numerous other appli-

cations. Uncertainty quantification, especially during design process, and error estimation can be cited here

among others. Due to their great flexibility, Finite Element Methods are a standard choice for this purpose.

As an accurate boundary description is important for the quality of the shape sensitivity analysis, isogeomet-

ric analysis [1] using non-uniform rational B-splines (NURBS) for the representation of the boundary is a very

promising approach. NURBS are most widely used in CAD systems and the geometry representation can there-

fore be considered as exact. Considerable research efforts have been devoted to the shape sensitivity analysis

based on isogeometric analysis, especially in the context of shape optimization [2].

In this work a formal approach to shape sensitivity analysis for electromagnetic problems and their discretiza-

tion in the context of isogeometric analysis given in [3] is described using a perturbation of identity mapping

and the concept of material (total) derivative. In order to account for the peculiarities of electromagnetism, the

definition of the material derivative, following [4], will incorporate the transformation behavior of electromag-

netic fields. Although motivated from differential geometry, the approach will be presented in terms of classical

vector calculus.

The material derivative is chosen because of its favorable regularity properties compared to the shape (partial)

derivative [5]. Furthermore, it allows for a common treatment of the continuous (differentiating, then discretiz-

ing) and the discrete (discretizing, then differentiating) approach to sensitivity analysis, introduced for a model

elliptic problem in [6]. Explicitly differentiating the discretized system, which is often tedious, can thus be

avoided. The extension of this approach to electromagnetics is a feature of the current work.

Regarding the shape sensitivity analysis of fields, numerical examples in two dimensions for the approxima-

tion of the material derivative are provided. These examples are used to validate the derived formulas. The

convergence of the numerical schemes will be shown for mesh refinement and k-refinement. Concerning shape

optimization, the shape sensitivity analysis of an energy functional, involving the adjoint state, will equally

be considered. The accuracy of the results, due to the geometry representation and the good approximation

properties of B-splines, show that isogeometric analysis is a well suited tool for shape sensitivity analysis in

electromagnetics.
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Abstract

In the framework of NURBS-based isogeometric analysis (see, e.g., [1, 2]), collocation techniques have

been recently proposed in [3] as an interesting high-order low-cost alternative to standard Galerkin ap-

proaches. In this work, the results shown in [3] are extended to the case of linear elasticity. Particular

attention is devoted to the imposition of boundary conditions (of both Dirichlet and Neumann type) and to

the treatment of the multi-patch case. Also, the construction of explicit high-order (in space) collocation

methods for elasto-dynamics is considered and studied.
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We are interested in studying the propagation of electromagnetic waves through human tissues. This phe-

nomenon arises in several biomedical areas, ranging from breast imaging, hyperthermia (technique used to kill

cancer cells) to electroporation. In these situations, one has to face complex geometries and heterogeneous

media. Thus in order to assess the biological effects of these techniques or to design adapted devices, there is a

need of efficient numerical modeling techniques.

The modeling of the interaction of electromagnetic waves with human tissues relies on Maxwell’s equations in

a dispersive medium. Indeed human tissues contains a high percentage of water; this characteristic makes this

medium dispersive. In such a medium, the speed of the wave propagating depends on the frequency : this takes

the form of a frequency dependent permittivity prescribed by some known laws.

This study focuses on numerical aspects of this modeling with the mixed time domain form of Maxwell’s equa-

tions. For a long time, such studies relied on Finite Differences Time Domain (FDTD) techniques (see eg.

[4,5]) and despite the intrinsic limitation of this method with regards to the treatment of complex geometrical

features, it is still widely used. More recently Finite Elements Time Domain (FETD) have also been investi-

gated for this purpose (see eg. [2,3]), mostly from the theoretical point of view.

However, in the prospect of designing higher order numerical schemes, the Discontinuous Galerkin framework

seems to be adapted. Less work has been done on this topic, but it now begins to be an active field for the case

of dispersive media (see eg. [6]).

In this work we would like to go further in the numerical analysis. Following [1], we present a Discontinuous

Galerkin framework for Maxwell’s equations that we extend to dispersive media. The dispersive nature of the

tissues will be modelized by a Debye medium and the effect taken into account via an Auxiliary Differential

Equation: this takes the form of an ODE coupled to the system of Maxwell’s equations, describing the evolution

of the polarization. This work includes theoretical results concerning existence of solutions and the convergence

analysis of both semi-discrete and fully discrete scheme, where the time discretization is performed by using a

second order Leap-Frog scheme in time. Finally we present some preliminary 2D numerical results in order to

validate the theoretical findings.
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This work is aimed at the computation of the edges flux/stress intensity functions (EFIFs/ESIFs) associated with

the singular solution of elliptic equation in the vicinity of 3-D circular singular edges. These are of significant

engineering importance in cracked and V-notched structures, in which the ESIFs may (and often do) vary along

the crack front.

Herein we follow the methods presented in [1] to explicitly determine the solution to the Laplace equation in

the vicinity of a circular singular edge in a general 3-D domain, by expanding the 3-D straight singular edge

solution. This solution can be expressed in the form of an asymptotic series involving primal functions and two

levels of shadow functions as follows (see [3]):

τ =
∞

∑
ℓ=0

∑
k=0

∂
ℓ

θAk(θ)ρ
αk

∑
i=0

(

ρ

R

)i+ℓ

φℓ,k,i(ϕ) (1)

where R is the distance of the singular point from the center of the edge, ρ and ϕ are ”polar” coordinates from

the edge, and θ is the position along the edge. Explicit expressions for the primal and shadow eigen-pairs are

provided in case of a penny-shaped crack for an axi-symmetric and non axi-symmetric situations. The explicit

solution is then exploited, in conjunction with a variation of the quasi-dual-function method [1,2] to extract the

series coefficients Ak(θ), called edge generalized flux intensity functions (EGFIFs), from p-FE solutions.

The extension of the quasi-dual-function method to circular edges is presented and numerical results are

provided where the EGFIFs are extracted for various example problems for an axisymmetric case and non-

axisymmetric cases. This is a first step towards the computation of the Edge Stress Intensity Function (EGSIFs)

in elasticity.
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One of the important aspects of IGA is its link to CAD geometry methods. Constructive Solid Geometry

(CSG) represents the analysis domain as Boolean constructions from a set of primitives. In the present work

we propose to use these primitives directly and apply Additive Schwarz on overlapping domains to actually

solve the Isogeometric Analysis numerical problem: we iterate on a collection of overlapping domains, each

defined by its own Isogeometric mapping. We consider the simple case of a Laplacian as well as linear elasticity.

For the Laplacian one can show on simple domains that, while the global stiffness matrices are not monotone,

a ”weak maximum principle” still holds, thus warranting the convergence of the Additive Schwarz method

without need for any preconditioning. Numerical examples show fast convergence, even on very distorted

domains ( where the Jacobian of the Isogeometry transformation is nearly singular). Numerical examples on

simple elasticity problems also converge in a few iterations. Thus our approach can be applied to complex

domains without having to use ”multipatch” constructs.

Another application of the present method is to use the ”Chimera” or zooming method described in [1] to

do local refinements. This can be an alternative to more complex refinement methods, moreover it has the

advantage of staying local. We will give examples of local ”zooming” instead of refinements. Trimmed volumes

can also be treated this way applying the standard original Schwarz alternating method. In conclusion we show

that these iterative methods can avoid the usage of complex construct such as T-Splines. Morover the additive

methods are naturally parallels and thus can extend to large 3D problems.

Interestingly this approach brings also to the forefront some non simple operations that have to be solved on

tri-variate volumes such as surface of intersection inside a volume projection of functions on such surfaces etc

Part of it is done using the Irit[ 3] geometry system. We will give numerous simple examples all based on the

use of the Geopdes software.
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Finite element models based on dual-mixed variational principles can provide better convergence rates and

higher accuracy for stresses than strain energy-based primal-mixed, or conventional displacement-based for-

mulations. The displacement-based methods can lead to especially poor numerical results for incompressible

materials and bending dominated thin plate and shell problems (incompressibility locking, shear- and mem-

brane locking) [1, 2]. Stress-based finite element models have been proven to be locking-free in many cases

and can give reliable numerical solutions, especially for the computed stresses.

One of the possibilities for the derivation of dimensionally reduced complementary energy-based shell models

is to satisfy the translational and rotational equilibrium equations in a weak sense, using the displacements and

rotations as Lagrangian multipliers. This procedure leads to the three-field dual-mixed variational principle

of Hellinger–Reissner with independently approximated displacements, rotations and not a priori symmetric

stresses [3, 4]. In the linear theory of elasticity its functional takes the form

HRd (σ
rs
,ϕ

s
,up) = −

Z

(V )

1

2
C−1

pqrs σ
pq

σ
rs

dV +

Z

(Su)

ũp σ
pqnqdS−

Z

(V )

[

up(σ
pq

;q +bp
)−σ

pq
εpqs ϕ

s
]

dV , (1)

where σ
rs is the non-symmetric stress tensor, ϕ

s is the axial vector of the skew-symmetric rotation tensor

φpq =−εpqsϕ
s with εpqs being the third-order permutation tensor and up is the displacement vector. The volume

of the body is denoted by V , its boundary surface is S with outward unit normal nq (S = Sp ∪Su, Sp ∩Su = /0),

bp stand for the body forces and ũp are the prescribed displacements on the surface part Su. The fourth-order

tensor C−1
pqrs = C−1

pqsr = C−1
rspq is the elastic compliance tensor. The only subsidiary conditions to functional (1)

are the stress boundary conditions

σ
klnl = p̃k

on Sp, (2)

where p̃k are prescribed surface tractions on Sp.

A dual-mixed hp finite element model with stable polynomial stress- and displacement interpolation and C0

continuous normal components of stresses is constructed for cylindrical shells. Two important properties of the

shell model are: (i) classical kinematical hypotheses regarding the deformation of the normal to the shell middle

surface are not applied and (ii) unmodified three-dimensional linear stress-strain relations are applied. The

numerical results are compared to the analytic solutions of Koiter’s cylindrical shell model. The convergences

in the energy norm as well as in the maximum norm of stresses and displacements are rapid for both h- and

p-extension, even if the Poisson ratio is close to 0.5, i.e., the dual-mixed hp finite element model is free from

incompressibility locking. The shell model and element developed give accurate and reliable numerical results

not only for thin but also for moderately thick cylindrical shells.
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senschaften, 4:602–694, 1914.

[4] E. Reissner. On a variational theorem in elasticity. Journal of Mathematics and Physics, 29:90–95, 1950.

70



HOFEIM 2011, Cracow, Poland

RELIABLE PATIENT-SPECIFIC p-FEM SIMULATION OF

FEMUR’S MECHANICAL RESPONSE

Nir Trabelsi and Zohar Yosibash

Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel

E-mail: nirtr@bgu.ac.il

KEYWORDS: p-FE, qCT, femur, bone biomechanics

A reliable subject-specific FE model to be used in clinical practice requires a high level of automation, verification and

validation. Herein we present recent results for generating p-FE models based on quantitative computed tomography

(qCT) scans. Femur’s geometry is represented by accurate smooth surfaces based on which a p-FE auto-mesh is generated.

Inhomogeneous linear elastic material properties at each region (cortical and trabecular) are assigned to the FE models

directly from the CT scan at each integration point E(x,y,z). In addition orthotropic material properties determined by

micromechanics-based methods were also considered in the p-FE model and their influence on the mechanical response

is examined [1].

After verification of the numerical results we validate these on a cohort of 17 fresh-frozen femurs which were defrosted,

qCT-scanned, and thereafter tested in an in-vitro setting [2,3]. p-FE models mimicking the experiments condition were

created from the qCT-scans and the computed displacements and strains were compared to the measured values in the

experiments. The FE results correlated with the experimental observation by linear regression with R2
= 0.97 and a slope

of 0.96 when comparing both displacements and strains (n = 263). The encouraging results enable us to enhance the

research to other human bones like metatarsal, humerus, and vertebrae. This study exemplifies that the presented method

is in an advanced stage to be used in clinical computer-aided decision making.
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After the introduction of isogeometric analysis (IGA) in [1], the research on isogeometric discretizations has

grown up considerably. Apart from the possibility of improving the efficiency of communication between

CAD software and PDE solvers (which is still a research topic), the main advantage of IGA with respect to

finite elements (FEM) seems to be the higher continuity of the discrete solutions. This is already known to

provide better convergence in terms of the degrees of freedom, better stability properties, and less numerical

dispersion.

The goal of this work is to understand the behavior of IGA in the simulation of some real electromagnetic

devices, and to check whether the method provides in computational electromagnetism the same advantages

that it has already shown in computational mechanics. We have chosen for this task two problems for which a

FEM simulation was already available, in order to compare the given results.

The first problem we analyze concerns the computation of per unit length parameters (resistance and induc-

tance) in power electrical cables. The main difficulty for the computation with finite elements arises at high

frequencies, when the skin effect becomes more important, since a very fine mesh is needed close to the bound-

ary. We will provide a comparison of the results both with FEM and IGA, and also with the method with high

order surface impedance boundary conditions used in [2], which is known to work well at high frequencies.

The second problem is the simulation of an induction heating furnace, as the one given in [3]. The furnace

consists of a helical inductor, the material to be treated, and a crucible that contains it. The simulations carried

out in [3] involve electromagnetic, thermal and hydrodynamic effects, since the material is heated until melting.

For the present work we have developed the thermoelectrical simulation with an isogeometric method. This

problem already presents some interesting features, as the skin effect in the electromagnetic conductors, or the

steep temperature gradients on the interfaces between thermal conductors and insulators.
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